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Note: Model III BASIC on the TRS-80 Model III is essentially the same as Level U BASIC on the 
TRS-80 Model I. The only difference is that a higher baud rate for saving onto tape can be set if 
you have a Model III with Model III BASIC (high= 1500 and low= 500). Both low and high baud 
rate use the same volume setting on the Model III. 

Using Your Cassette Deck 

Many factors affect the performance of a cassette system. The most significant one is volume. Too 
low a volume may cause some of the information to be missed. Too high a volume may cause 
distortion and result in the transfer of background noise as valid information. 

Five 'different cassette models have been supplied with the TRS-80 system- the CTR-40, CTR-41, 
CTR-80, CTR-BOA, and CCR-81. Each model has its own loading characteristics. The table below 
gives the suggested volume ranges for each of the CTR models. 

Notice that the volume ranges for Level I and Level II are different. This is because the Level II 
data transfer rate is faster (500 baud vs. 250 baud). Also, notice that for the TRS-80 Model I, 
pre-recorded Radio Shack programs need a slightly higher volume setting than that required by your 
own CS'A VED tapes. This is because the pre-recorded tapes are produced with high-speed audio 
equipment at a slightly lower volume level than the CSA VE process provides. The Model III records 
at a lower volume than the pre-recorded tapes are recorded at, so that the volume setting for 
user-generated tapes is higher than for pre-programmed tapes. You will need to take this into 
account when CLOADing Level II programs into a Model III. 

Recorder User-Generated Tapes Pre-Recorded 
Model Radio Shack Tapes 

Model I Model III Model I [Model III 

Level I Level II Levell Level II 
CTR.-40 Yellow Line Red Line Yellow Line Red Line 
CTR-41 6-8 4-6 . 6.5-8.5 5-7 
CTR-80 4.5-6.5 3-5 5-7 5.5-7.5 2.5-5 4-6 
CTR-80A 4.5-6.5 3-5 5-7 5.5-7.5 2.5-5 4-6 
CCR-81 4.5-6.5 3-5 5-7 5.5-7.5 2.5-5 4-6 

(With the CTR-40, CTR-80, CTR-BOA, and CCR-81, tum the control to the left to increase volume. 
With the CTR-41, turn the control to the right.) 



When information is being loaded from the cassette tape, two asterisks will appear on the screen. The 
one on the right will flash on or off as the program is read in. If the asterisks do not appear, or the 
one on the right does not flash, then the volume setting is probably too low. Increase the volume and 
try again. If you have a Model III this may be an indication that the tape's baud rate is different 
thon the Compuu:~r's baud rate. (All Radio Shack Model I Level II pre-recorded cassettes are recorded 
at 500 baud rate, so Low baud rate must be selected when they are loaded on the Model III.) Try 
resetb.ng the baud rate from high to low or vice versa (See your Operation Manual). 

Use the reset button to stop the cassette and return control to you if loading problems occur. 

Radio Shack Programs are recorded at least twice on each tape. Following this practice when you 
reco:rd programs on tape will give you a back-up if one does not load properly or if it becomes 
damaged. 

Important Note: The CTR-41 requires that you keep the supplied "dummy plug" in the MIC jack 
at all times. However, the other models should never be used with the "dummy plug." 

Levell 

Sm:m.itimes you will get an error message during an attempted CLOAD.. This means that some 
information was lost or garbled. Adjust the volume level slightly and try again. 

Level U and Model III BASIC 

In case of an error message, proceed as above. There is also a rare case in which the program is not 
loaded correctly even though no error message is generated. So, after CLOADing a program, be sure 
to LIS'r it. If some data was garbled, then at some point in the listing the display will be filled with 
meaningless words and characters. Adjust the volume and try again. 

Hin ts and Tips 

Computer tapes should be stored in a relatively dust.-free area (a cassette case is recommended) and 
prote<!ted from high temperatures. Magnetic and electrical fields may alter recorded information, so 
avoid placing the tape near them (Le. household appliances, power sources such as transformers and 
television sets, etc . .). 

The cassette deck supplied with the TRS-80 if; very compatible with the system and will perform its 
duties with great success. To keep the cassette deck in top condition and thus minimize your 
problems, you should periodically perform some routine maintenance on iL Dirty heads can cause as 
much as a 50% loss of volume. Also, heads becom~ magnetized with use and may cause distortion. 
1/Ve recommend that you dean the head, capstan, and pinch roller after every four hours of operation. 
Heads on new recorders should always be deaned before use. 

Note: Casm,;tte deaning and demagnetizing accessories are available from your local Radio Shack 
Sf.O!'f!. 
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TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE 
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A 

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION 

LIMITED WARRANTY 
I. CUSTOMER OBLIGATIONS 

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the "Equipment"), and any copies of Radio 
Shack software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities, 
versatility, and other requirements of CUSTOMER. 

B. CUSTOMER assumes, full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software 
are to function, and for its installation. 

11. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE 

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO 
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing 
defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM 
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, .RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS 
AUTHORIZED LOCATION. The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been 
subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment 
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer 
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of 
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole 
expense. RADIO SHACK has no obligation to replace or repair expendable items. 

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this 
paragraph. Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a 
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document 
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store, 
participating Radio Shack franchisee or Radio Shack dealer along with the sales document. 

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf 
of RADIO SHACK. 

D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. 

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER. 

Ill. LIMITATION OF LIABILITY 

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON 
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY 
"EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY 
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE 
USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR 
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER 
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE". 

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY 
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE" 
INVOLVED. 

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software. 
C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years 

after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or 
Software, whichever first occurs. 

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may 
not apply to CUSTOMER. 

IV. RADIO SHACK SOFTWARE LICENSE 

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer. subject to the following 
provisions: · 
A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software. 
B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to 

the Software. 
C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this 

function. 
D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically 

provided in this Software License. Customer is expressly prohibited from disassembling the Software. 
E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in 

the operation of one computer with the Software, but only to the extent the Software ,allows a backup copy to be made. However, for 
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use. 

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each 
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from 
CUSTOMER. 

G. All copyright notices shall be retained on all copies of the Software. 

V. APPLICABILITY OF WARRANTY 

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or 
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to 
CUSTOMER. 

B. , The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the 
Software and any manufacturer of the Equipment sold by RADIO SHACK. 

VI. STATE LAW RIGHTS 

The warranties granted herein give the ortglnal CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary 
from state to state. 
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Preface 

The Assembly-Language Tutor is a self-contained course that will teach you the rudiments of assembly­
language programming on the Model I or Model III Computers. 

Assembly-language programming allows you to execute .. Z-80" machine-language instructions on the 
Model I or III. These are instructions that operate directly with the Z-80 microprocessor used in the 
Models I and III. 

Assembly language is a great deal faster than BASIC.or other "high-level" languages for the Model I and 
III - as much as 300 times faster, depending upon the task. On the other hand, assembly language is 
much harder to learn than BASIC. 

What we've attempted to do here is to make assembly language as "foolproof'' as possible, with an 
.. interactive" package to guide you through the maze of assembly-language instructions and techniques. 

The Assembly-Language Tutor includes not only a complete text on beginning assembly-language 
programming, but a complete software training package as well. 

The software portion of the Assembly-Language Tutor includes a complete editor, assembler (to 
translate text into Z-80 machine-language instructions), and control program. · 

The control program allows you to execute assembly-language programs, and has a great deal of error 
checking built into it. These checks will not permit you to .. lose control" as is the case with just an 
assembler. The control program and its main component, an "interpreter;• constantly monitor the 
assembly-language instruction you are executing. They will inform you if you have made a serious error 
that in other situations would "crash" the system. 

At any given time you can see the state of the assembly-language program displayed on the screen (text 
and instructions), the "registers" in the Z-80 microprocessor, and a selected memory area that you are 
using for storage. You can also execute the assembly-language program at your own speed, from 
seconds per instruction to dozens of instructions per second, to allow you to follow the program 
step-by-step and· see the changing conditions. 

Along with the Assembly-Language Tutor Editor/ Assembler/ Interpreter we've also provided 25 Les­
son Files. These are complete assembly-language programs, for the most part, that illustrate the text and 
make it easy for you to see examples of the techniques and instructions discussed in each lesson. 

The text itself consists of 27 lessons, 25 of which are referenced to a Lesson File. Each lesson contains 
practical examples of assembly-language programming, discussion of Z-80 instructions, and student 
exercises. 

The Assembly-Language Tutor will teach you the most commonly used Z-80 instructions, show you 
how to write simple assembly-language programs, teach you how to "interface" these programs with 
BASIC to enhance BASIC processing with the high speed of assembly language, and will give you 
guidance in planning larger assembly-language projects. 

Special thanks are due Craig Verbeck for his help in debugging. Thanks also to my wife Janet for her 
debugging help and, above all, her patience. 

How to Use This Course 
Although this course is meant as a prerequisite to use of the Series I Editor/ Assembler, it is not necessary 
to have any additional software. You should have a Model I with at least 16K of RAM and Level II 
BASIC or a Model III with at least 16K of RAM and Model III BASIC. 

The lessons are about equal in length. Plan on completing one lesson at each sitting, if you can. In most 
of the lessons you'll be asked to perform exercises, either in following existing programs from the Lesson 
Files or in writing your own short program segments. Do these exercises if you can, as this is the fastest 
way to learn to program in assembly language. 
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A dashed line following text signifies that you should perform the indicated action before continuing. In 
some cases this will be thinking through a simple question. In other cases it will be writing a short 
program segment. 

Assembly-language programming is fun, challenging, and can greatly supplement the flexibility of 
BASIC. Good luck! See you at the end of the course! 
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Lesson 1 
How to Use the ALT 

What is ALT? 
ALT stands for "Assembly-Language Tutor." We abbreviated this to ALT. ALT is an assembly-language 
program that will teach you assembly language. It contains: 

• An editor, similar but not identical to the BASIC program editor. This portion of ALT will help you 
construct text lines that represent the "language" portion of assembly-language programs. A typical 
line might be: 

100 START LO A,23 ;load A reg with 23 

This particular line is eventually decoded as an instruction to the computer that says "At a location 
called START we1l put an instruction to load a value of 23 into the A register." No need to worry about 
what that instruction does now;just observe that you can talk to the computer via assembly language by 
plain text, such as line 100 above. 

• An assembler. This portion of ALT takes a sequence of assembly-language lines like the one above and 
converts them into numbers that the microprocessor can recognize. This conversion process is called 
"assembly." The line above, for example, would be converted to the decimal numbers of 

3E 17 

which, when input to the microprocessor in your Model I or III would cause a value of 23 to be put into a 
type of memory location called A. 

• A "debug" package. This portion of ALT will let you "execute;• or run, your assembly-language 
programs. It will let you look at certain memory areas in which results are stored, change the areas at 
will, and generally let you control things. 

• An interpreter. This portion of ALT is the "controller." Assembly language is so fast that it's hard to see 
what is happening. The interpreter interprets each assembly-language instruction and slows it down 
to anywhere from dozens of instructions per second to one instruction every few seconds. 

At the same time, the interpreter displays the current instruction on the screen so that you can follow 
exactly where you are in the program and what is happening inside the microprocessor and memory. 

Another important facet of the interpreter is that it doesn't allow you to lose control by putting in 
incorrect assembly-language instructions. You can't "blow-up" your programs, as the interpreter will 
tell you that you've made an error. 

All the parts of the A LT are in one package. Once you load it, you don't have to switch between different 
parts, but have complete control of the assembly-language program. 

There's another part of A LT also. You 11 find a number of cassettes with your system. On the cassettes are 
a series of 26 lessons. These lessons contain complete assembly-language programs that correspond to 
each lesson in the text. 

You can proceed at your own pace with the lessons; we would recommend, however, that you try to 
complete each lesson at one sitting. 

How to Load ALT 
The first step of every lesson is to load the ALT program. The ALT program is 011 cassette. 

You must have at least 16K of "RAM" (random-access memory) and Level II BASIC (Model I) or 
Model III BASIC (Model III) to be able to use ALT. 

• Turn on your system. For Model Ill systems, answer the 



} How to Use the ALf 

Cass? 

prompt with L, to select 500~baud tapes 

• Type an ENTER for 

Memory Size? 

• Load the cassette tape marked ALT into the cassette player as you would any other tape to be loaded. 

• Rewind the cassette 

• Type SYSTEM and ENTER 

• You should sec a 

*? 

displayed on the screen. 

• Type ALT and ENTER 

• A IT should now begin loading. You should see asterisks flashing at the upper right-hand corner of the 
screen during the load. 

• After the load is done, you should see another 

*? 

displayed on the screen 

• Type / followed by ENTER 

• ALT should now start executing, and you should see a "menu" of items. Now sharply hit ENTER, and 
you'll see the display of Figure LESS!-! 

PC AH AB S Z H P N C B C D E H L IX IY SP 
F"FFF FF 1 1 1 1 1 I I 1 1 1 1 1 1 1 FF FF FF FF FF FF FFFF FFFF FFFF .................... ,, .......................................................................................................................................................... . 
STATUS LOCN CONTENTS LINE LABEL OPCODE OPERAND COMMENT 

............................................................................................................................................................................. 
LOCN 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 

......................................................................................... "'················································ 
MODE=EOIT SPEE0=9000 FREE MEMORY=2 1 360 BP @ FFFF.FFFF,FFFF,FFFF 
COMMAND= 

Figure LESS1-1. ALT Basic Display 

Load ALT now so that you get the display shown above. After the load, go on to the next discussion. 

Loading Lesson Files 

At the beginning of each lesson, you will be asked to load the Lesson File for the lesson. These Lesson 
Files all have the same type of name 

LESSXX 

where "XX" is the number of the lesson. The file for Lesson 20, for example, is called 

LESS20 

To load a Lesson File from cassette: 

• Load ALT as in the above description 
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How to Use the ALT } 

• Put the Lesson Tape in the cassette recorder 

• Rewind the tape 

• Enter L followed by space, followed by LESSXX, followed by ENTER ("XX" is a number of l 
through 26, corresponding to the Lesson chapter number) 

• You should see the message 

READY TAPE 

displayed in the "message area" of the screen, as shown in Figure LESSI-2 

PC AH AB S Z H P N C B C D E H L IX IY SP, 
FFFF FF 1 1 1 1 1 I 1 I 1 I 1 1 1 1 FF FF FF FF FF FF FFFF FFFF FFFF 

STATUS LOCN CONTENTS LINE LABEL OPCODE OPERAND COMMENT 

LOCN 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 

MODE=EDIT SPEED=9000 
COMMAND=L LESS 1 0 

FREE MEMORY=21 360 BP @ FFFF,FFFF,FFFF,FFFF 

'LOAD TAPE 
COMMAND 

READY TAPE 

' '"PROMPT" 
MESSAGE 

Figure LESS1-2. Message Area 

• Type ENTER 

• You should see the message 

READING CASSETTE FILE 

displayed in the message area 

• After a successful load, you should see the READING CASSETTE FILE message disappear 

• You should also see text in the middle of the screen, as shown in Figure LESS 1-3 

PC AH AB S Z H P N C B C O E H L IX IY SP 
FFFF FF 1 1 I 1 1 1 1 1 l 1 1 1 1 1 FF FF FF FF FF FF FFFF FFFF FFFF 

STATUSLOCN CONTENTS LINE 
00099 
00100 
00110 
00120 
00130 

LABEL OPCODE OPERAND COMMENT 
;• .. ••••••• ................. LESSON 1 ••••••••••••••-•••••• 
; ADC FOR MULTIPLE-PRECISION 4-BYT 
MPAOOS LO HL. 7903H 

LO IX.7907H 
LO B,4 

LOCN 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 

..................................................................................................................................................................... 
MODE=EDIT SPEED=&OOO FREE MEMORY= 1 9025 BP @ FFFF,FFFF,FFFF.FFFF 
COMMAND=L LESS 1 

Figure LESS1-3. Lesson File Display 

Load Lesson File Number I by following the steps above. The name of this Lesson File is LESSl. 

You should now have the screen display shown in Figure LESS 1-3. 
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} How to Use the ALr 

What the Display Represents 
There are 5 areas of the display, as shown in Figure LESS l-4. 

PC AH AB S Z H P N C B C D E H L IX IV SP } REGISTER 
FFFF FF 1 1 1 I 1 I 1 1 1 1 1 1 1 I FF FF FF FF FF FF FFFF FFFF FFFF AREA 

;;~;~;•:~~-~~~~•~~~•;•••••~~~;••••~;~•~:••••~;;;~~;••••~;;;;:;••;~;:~•;•~;•• } ASSEMBLY-

LANGUAGE 
MACHINE-LANGUAGE ASSEMBLY-LANGUAGE TEXT AND 

OUTPUT TEXT LINES OBJECT 

:~:···:··~~-··~;···~·;···~~-·~;··~~-··~·;···~;··~;··~;··~~-··~~-··~~--~;··;;······} 
............................... ,., ................................................................................................. .. 

MEMORY 
TRACE 
AREA 

MOOE=EDIT SPEED=9000 FREE MEMORY= 1 9025 BP @ FFFF FFFF FFFF FFFF 

COMMAN~ - /cu ... ? 
COMMAND CONDITIONS 
INPUT ANO LINE 
MESSAGE 
OUTPUT 

Figure LESS1-4. Display Areas 

The first "band" on the screen shows the Z-80 microprocessor "registers." The registers are high-speed 
memory locations that are located not in RAM memory, but inside the microprocessor itself. The 
microprocessor is the small "chip," or integrated circuit, that is the heart of all the "logic" of your system. 

We'll be working continually with these registers in assembly language. We'll describe them in detail in 
the next lesson. 

The register names are shown on the top line. On the next line, the register "contents" are shown, directly 
below the corresponding register names. You'll see the contents line change as the program executes or 
as you modify the contents of the registers under A LT. 

The next "band:' after the asterisks, is a text area of 6 lines. The first line is fixed and is a heading for the 8 
"fields"ofSTATUS, LOCN, CONTENTS, LINE, LABEL, OPCODE, OPERAND, and COMMENT. 

The right portion of the text area shows the assembly-language text lines. This is the text that is in the 
Lesson File or that you have entered for an assembly-language program. 

Just as in BASIC. each line of text has a "line number" associated with it. 

You should see the text for Lesson I displayed on the screen at this point. 

The left portion of the text area normally displays the "output" of the assembler portion of ALT. The 
lines in this area correspond to the lines of text. They are the "machine-language;' or microprocessor 
code, equivalent of the text lines. At this point, you should not see anything in the left portion oft he text 
area. 

The next "band" after the asterisks is a memory "trace" area. This area displays the contents of memory 
locations that you select. 

To see how it works, type 

ZT 8000 followed by ENTER 

You should see the display shown in Figure LESS 1-5, which represents the 8000 hexadecimal memory 
area of RAM (the values may be different). (If you have a 16K RAM system use "ZT 7000" to see sample 
data.) 
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PC AH AB S Z H P N C B C D E H L IX IY SP 
FFFFFF 11111111 I I I I I I FF FF FF FF FF FF FFFFFFFFFFFF .......................................................................................................... 
STATUS LOCN CONTENTS LINE LABEL OPCODE OPERAND COMMENT 

STARTING LOCATIONS 

..... i. ................................................................................................ . 
LOCN 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
B000 53 02 10 05 23 FF FF FF OB AB C2 83 95 FE 28 DD 
BOIO 09 II 08 7A EF E2 FO 18 42 95 87 88 E2 83 15 23 

MODE=EDIT SPEED=9000 FREE MEMORY=2 I 360 BP @ FFFF,FFFF,FFFF,FFFF 
COMMAND= 

NOTE: DATA SHOWN 
IS TYPICAL. DATA ON 
YOUR DISPLAY WILL 
BE DIFFERENT 

THIS AREA DISPLAYS 
THE LOCATIONS BOOOH 
THROUGH 801FH. 

Figure LESS1-5. Memory Trace Area 

The next band, after the asterisks, contains 2 lines. 

The first line contains the current "conditions" under which ALT is operating. 

The MODE is either EDIT for editing mode, ASSM for assembly mode, or EXEC for execute 
(interpreter) mode. 

The SPEED is a number from Oto 9999. This represents the speed at which programs will execute and is 
controlled by you. A value ofO is a low speed, while a value of9999 is high speed. Low speed is about one 
instruction every 3 seconds, while high speed is dozens of instructions per second. 

FREE MEMORY tells you how much memory you have left. This will change as you enter text and do 
other operations, such as assemblies. 

The BP@ message indicates the "breakpoints"that you have set. A Breakpoint is a special debugging 
device that lets you stop the program at selected instructions. You may have 4 breakpoints at any time. 

The last line on the screen starts with COMMAND=. This is the line in which you'll be entering all ALT 
commands. As you type the command, you'll see it appear to the right of the COMMAND= message. 

The right-hand portion of the command line is used for error messages, such as DISK ERROR or 
INVALID ARGUMENTS. The error message will disappear with the next command that you enter. 

Commands 
The complete command summary for A LT is given in Appendix I. We 'II go through some of them here. 

Every command is terminated by an ENTER, and we won't repeat the ENTER when we're describing 
the following commands. 

Displaying Text by the P Command 
Edit Mode commands are similar to BASIC Edit Mode commands, but are not identical. 

You should have text displayed from loading the Lesson File. 

Printing Lines 
To display the end of the text, type 

P• 
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You should see the last line of Lesson I, line 440. The* character is a special character that stands for the 
last line of the text. 

To get hack to the first line of text, type 

P# 

You should see the beginning of the text. The # character is a special character that stands for the 
beginning line of the text. 

To display the text from any line, type 

PLLL 

where LLL is the line number. To display from line 200 on, for example, type 

P200 

You should see the text from 200 on displayed. 

A special form of the P command lets us "scroll through" the text. Entering 

p 

alone, displays the "current text." Entering one P after another displays the next 5 lines of text at a time. 
Try it now. 

To get back to the start, end, or any given line, just use the P#, P*, or PLLL form of the command. 

Deleting Lines 
You can delete lines from the text file by using the D command. To delete line 100, for example, you'd 
type 

0100 

Get back to the beginning of the text by typing P#. Do a delete of line l00 by D100 now. 

You should see line IO0 disappear and the remaining lines "scroll up." 

Another form of the command is 

DNNN:MMM 

This form deletes lines NNN through MMM. Try to delete lines 120 through 140 now. 

Did you use 

D120:1407 

If so, you saw the lines deleted and a scroll to the next lines of text. 

Inserting Lines 
The third Edit Mode command lets you insert text. There are two conditions for this insert command. 

If you do not have text in the "buffer" you can use the I command to create new text. You'd want to do 
this if you were creating a new assembly-language program, for example. 

To see how this works, delete all the text in the buffer by 

0#:• 
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You should see the text disappear from the screen entirely. 

Now type 

1100,10 

How to Use the ALT } 

You'll see a" IOO" under the LINE heading appear. You can now type anything you'd like (at least in this 
lesson). Go ahead, type until you get to the end of the line. 

If you typed text until the end of the line, you saw a new line number appear - line I IO. ALT 
automatically terminates a line if more than 34 characters are entered. 

The I 00 in the I command says "start at line I 00." The IO says "increment by l 0." You could keep adding 
text up to the limits of the text buffer. You can use any start number and increment you'd like ( 11 l and 
13, for example), but the "normal" ones often used are 100 and 10. 

To end any line just type ENTER. 

Try using the Insert mode for a while. When you want to get back to the next Command, press BREAK. 
BREAK stops the insert mode and returns you to the ALT Command Mode for the next command. 

BREAK will return to the ALT Command Mode under most conditions. 

Type Q (Quit) while in Command Mode to return to TRSDOS. 

To Sum It All Up 
At the end of each Lesson, we have a little section entitled "To Sum It All Up." It will review what you've 
learned in the lesson. 

In this first lesson we've covered: 

• ALT is a program that consists of an editor, assembler, interpreter, and debugging package 

• A LT allows you to execute assembly-language programs under your control and has preventative 
measures in it to keep the program under control 

• The display for ALf has 5 areas that display the contents of registers in the Z-80 microprocessor, the 
assembly-language text and machine-language for the program, a selected memory ''trace" area, the 
current ALT mode and conditions, and the current command 

• The P, D, and I Edit Mode commands let you display, delete. and insert lines of text for the program 

• The BREAK key will usually return you to the Command Mode 

For Further Study 
Appendix I ALT Commands 





Lesson 2 
Z-80 Registers 

There is no Lesson File for this lesson. 

In this lesson we're going to look at the Z-80 microprocessor "registers." We'll also find out how to 
change them through ALT. 

What Is a Register? 
By this time you probably know what RAM (random-access-memory) and ROM (read-only-memory) 
are, but we'll briefly describe them anyway. RAM is a "read-write" memory organized in bytes, which 
are 8 bits or binary digits long, as shown in Figure LESS2-1. ROM is a "read-only" memory also 
organized in bytes, as shown in the figure. 

MEMORY 
ADDRESS 
(DECIMAL) 

BYTE0 

16,383 
16,384 

32,767 
32,766 

49,151 
49,152 

BYTE 65,535 

VIDEO DISPLAY, KEYBOARD 

RAM AREA 

8 BITS "WIDE" 

Figure LESS2-1. ROM and RAM 

A bit is either a O or a l, on or off, lighted or unlighted. A typical byte of 8 bits, therefore, might be 
something like 10110111 - 8 different bits of any combination. 

The Z-80 microprocessor in the Model I or III contains a group of "registers:• which are nothing more 
than memory locations, very similar to RAM. 

Unlike RAM and ROM, though, which are addressed by a location value of O through 65,535, 
microprocessor registers are called by letter designations, as shown in Figure LESS2-2. 
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1,.------16 BITS "WIDE"-----•""11 
____ a BITS __ • .,...il 

WIDE 

A 

F 

B 

C 

D 

E 

H 

L 

A' 

F' 

91 

C' 

D' 

E' 

H' 

L' 

R 

PC 

SP 

IX 

I y 

GENERAL-PURPOSE 
REGISTERS 

ALTERNATE SET OF 
GENERAL-PURPOSE 

REGISTERS 

} 
NOT GENERALLY 
USED BY PROG­
RAMMER 

Figure LESS2-2. Z-80 Registers 

SPECIAL­
PURPOSE 
REGISTERS 

The letter designations are not necessarily related to their functions, although some are. 

In general, Z-80 registers, or "cpu registers;' are used to hold the results of temporary operations. 
Because they can be read from or written to at faster speeds than RAM memory, using cpu registers 
rather than RAM memory locations speeds up the microprocessor instructions, which speeds up any 
program. 

The entire "instruction set" of the Z-80 and other microprocessors is geared to using the cpu registers. 
Although there are many instructions which handle reading and writing to memory, just about all data 
passes through one or more of the cpu registers. 

Register Functions 
Look at Figure LESS 1-1. On the top line, you 11 see the listing of all of the cpu registers. 

All register contents on the second line are shown in hexadecimal, a shorthand way of representing 
binary. There are two hexadecimal digits for every 8 bits, so you'll see 2 hex digits under many of the 
registers. The A register is also shown in binary. 

Some of the registers hold 2 bytes instead of I byte, however, twice as much as other registers or RAM 
locations. In this case you'll see four hex digits. 

Hex digits are O through 9 and A through F. We'll explain them in a moment. 
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______________________ Z_-_8_R_eg~sters 2 
The first register is the PC, or Program Counter. This is the 2-byte register in the cpu that "points to., the 
next microprocessor instruction in memory. 

Next are "AH" (A register in hexadecimal) and "AB" (A register in binary). The AH display has 2 hex 
digits under it, as the A register is 8 bits. The AB is the same value in binary, a total of 8 binary digits or 
bits. Note that the bits are either 0 or I. 

Next are 6 special bits called Flags. The flags are S, Z, H. P. N, and C. These flags all have special 
meanings that we'll discuss in later lessons. For now. just note that there are 6 of them, and each hol.ds 
either a O or l. The Flags are collected together in a special register called the F register. 

Next are B, C, D, E, H, and L. These are six additional registers in the cpu -- each one 8 bits or two hex 
digits. 

The last three registers in the cpu are the IX, I Y, and SP registers. Each of 1.hese are 16 hits, or 2 bytes, 
and are represented by 4 hex digits. 

In addition to these registers, there is a duplicate set of the A, 8, C, D, E, H, and L registers called the 
"prime" registers. These were shown in Figure LESS2-2. Only one set of these registers, prime or 
non-prime, can be active at any time. We will see later how to switch between them in programs. 

Working in Binary and Hexadecimal 
If you want to do assembly-language programming, you'll have to become a little familiar with binary 
and hexadecimal notation. You won't have to become a math whiz at it. but you will have to be able to 
convert between decimal numbers and binary and hexadecimaL 

Let's consider 8- and l 6-bit binary numbers, since these are the ones we'll be working with the most. 
Each 8-bit number represents data as shown in Figure LESS2-3. 

/THESE "BIT POSITIONS'' 
/' ARE NUMBERED 

7 : 6 : 5 : 4 : 3 : 2 : 1 : (l ACCORDING TO POWER I 1 0 1 1 0 1 0 1 I OF 2 THEY REPRESENT 

U~I L.. 2° POSITION (1) 

L.. 2' POSITION (2) 

2' POSITION (4) 

2' POSITION (8) 

2' POSITION (16) 

25 POSITION (32) 

2" POSITION (64) 

2' POSITION (128) 

Figure LESS2-3. Eight~Bit Binary Numbers 

Each digit position of an 8-bit binary number represents a power of two. The "bit position" on the right is 
2 to the zero power, or I. The next is 2 to the first power. or 2. rhe next position is 2 to the second power, 
or 4. The next positions are 8, 16, 32, 64, and 128. 

To find the equivalent decimal number represented hy an 8--bit binary number. just add together the 
powers of two represented: 

1010! !00 = ? 
128 
+32 

+8 

+4 

10101 lOO = 172 decimal 
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To convert from decimal to binary, find the powers of two that make up the decimal number. To convert 
135 to binary, for example: 

135 = ? 
Does 128 "go" into 135? - yes, 
Does 64 "go" into 7? - no 
Does 32 "go" into 7? - no 
Does 16 "go" into 7? - no 
Does 8 '"go" into 7? - no 
Does 4 "go" into 7? - yes, 
Does 2 "go" into 3? - yes 
Does I "go" into I? - yes 

135 = 128+4+2+1 = 10000111 in binary 

135-128=7 

7-4=3 
3-2=1 
1-1=0 

If this all seems confusing, don'.t despair. We have an appendix to convert between decima I, binary, and 
hexadecimal in the back, Appendix III. It will convert all values from 0 through 255. 

Before you look at the Appendix, though, try some values yourself: 

• What is 0 11100 IO binary in decimal? 
• What is IO IO IO IO binary in decimal? 
• What is 255 decimal in binary? 
• What is 33 decimal in binary? 

Did you get the answers without looking in the Appendix? The answers are 

• 011 IO0IO = 114 decimal 
• IO IO IO IO = 170 decimal 
• 11111111 = 255 decimal 
• 00100001 = 33 decimal 

When you're using 16-bit binary numbers, the process is the same, but the additional bits represent 
larger powers of 2, as shown in Figure LESS2-4. The "high-order" bits represent 32768, 16384, 8192, 
4096, 2048, I024, 512, and 256. The "low-order" 8 bits represent values as in 8-bit numbers. We won't 
burden you with a lot of exercises, but we'll just show you one conversion: 

12 

IOIOlllIOOO0llll =? 
32768 

8192 
2048 
I024 
512 
256 

8 
4 
2 

44815 



Z-8 Registers 2 

11s: 14: 13: 12: 11: 10: 9 : , : 7 : 6 : s : 4 : 3 : 2 : 1 : o 1 ~g:~:¼~~s 
TWO REPRESENTED 

Figure LESS2-4. Sixteen-Bit Binary Numbers 

You can see that it gets rather tedious to represent Jong strings of binary numbers. Programmers use a 
kind of shorthand to make things more compact. The shorthand is called "hexadecimal:' 

The hexadecimal numbers and their decimal equivalents for 0 through 15 are shown here 

Decimal Binary Hexadecimal 

0 0000 0 
I 0001 I 
2 0010 2 
3 00II 3 
4 0100 4 
5 0101 5 
6 0II0 6 
7 0111 7 
8 1000 8 
9 1001 9 
IO 1010 A 
11 IOII B 
12 llOO C 
13 ll0I D 
14 11 IO E 
15 1111 F 

To convert any binary number to hexadecimal, simply divide into groups of 4 bits and use the chart 
above to find the hex equivalent of each group, as shown in Figure LESS2-5. 

CONVERTING FROM BINARY TO HEXADECIMAL 

1011100100110110 

~ 
1011 1001 0011 0110 

i i ! i 
B 9 3 6 

CONVERTING FROM HEXADECIMAL TO BINARY 

1010 1010 0000 0001 

1010101000000001 

ORIGINAL 
GROUP IN 4 BITS 

CONVERT FROM TABLE 

HEXADECIMAL 

ORIGINAL 
CONVERT FROM TABLE 

GROUP 

BINARY 

Figure LESS2-5. Binary/Hexadecimal Conversions 
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To convert back again, translate each hex digit to a 4-bit binary value, as illustrated in the figure. 

The easiest way to convert between the three types of numbers is to use Appendix III. After a while, 
you'll be able to work well with binary and hex numbers because you will see them frequently. 

Hexadecimal numbers usually have an "H" suffix to indicate that they are in hex. The number 0 I OOH, 
for example, is 100 hex, or 256 decimal (IOOH=OOOIOOO00OO0 binary). 

Hexadecimal numbers often have a "leading" 0 if the number starts with A through F. The reason for 
this is that many programs cannot decide whether a number like FACE is a hexadecimal number or a 
text name. A 0FACE leaves no doubt. 

Using the Modify Register, Trace Memory, 
and Modify Memory Commands 

To give you some experience in binary and hex, we'll show you the ZR, ZT, and ZM commands. These 
commands are special ALT commands that are entered in Command Mode. 

ZR - Modify Register 
This command lets you modify a cpu register. The form is 

ZRX=VVVV 

where Xisaregisternameof A, F, B, C, D, E, H, L, AF, BC, DE, HL, IX, IY, SP, or PC. The VVVVisa 
hexadecimal value of I through 4 hex digits. 

Enter 

ZR A=11 

You should seethe A register change to 00010001 under AB and to 11 under AH. Try some other values 
to see the changes. Try entering values from 0 through A, and watch how the binary representation of A 
(AB) changes from 00000000 through 00001010. 

Try changing the other registers. Note that some registers are grouped together, like AF, BC, DE, and 
HL. These registers are called register pairs and when taken together this way represent a 16-bit register 
instead of two 8-bit registers. Note that when you change the HL register pair by 

ZR HL= 1234 

both the H and L registers change, but that you can also change each individually by 

ZR H= 1 2 and ZR L=34 

ALT will give you an "INVALID ARGUMENTS" message if you try to enter too many hex digits or 
something other than a hex digit. In that case, just try again. 

ZT - Trace Memory 
The ZT command lets you display any 32-byte area of memory. The format of ZT is 

ZTMMMM 

where MMMM is a I- to 4-digit hex value. 

Enter 

ZT7900 

You should see 7900H and 7910H under the LOCN column in the trace area. There will be 16hex values 
on the first line and 16 hex values on the second line in this area. 
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The .. 00 .. through "OF" on top represents the last portion of the address. To find location 791 EH, for 
example, you'd look in the 7910 H row and then under the OE H column to find the value for that memory 
location. 

The LOCN columns always start with a number that is a multiple of 16. These numbers are numbers like 
7900H, 7901 H, 7902H, and so forth. ALT always "rounds off" any location value input to this type of 
number. For example, try 

ZT 7111 

You1l see the display change to 71 IOH and 7120H under the LOCN column. 

ZM - Modify Memory 
You can change memory locations just like you were able to change register values by using the ZM 
command. 

The format of the ZM command is 

ZM HHHH= 

where HHHH is a memory location in hexadecimal. 

Enter 

ZT7900 

and then enter 

ZM 7900= 

ALT will reply with something like 

ZM 7900=00 

The 00, or whatever value is displayed, represents the current contents of that memory location. To 
change the value, simply enter a new value. To leave the contents of the memory location unchanged, 
enter a space alone without any value. 

Suppose you wanted to change locations 7900H through 7905H to 12H, 34H, 56H, 78H, 9AH, and 
BCH, for example. You'd have something like 

ZM 7900=XX 1 2 

7901=XX 34 

7902=XX 156 

7903=XX 78 

7904=XX 9A 

790!5=XX BC 

Try it, and you1l see the memory data changing on the trace display. 

To get out of the memory change mode, just hit ENTER before any value. 

Experimentwith the ZM command in the 7900H area of memory. 

ALT will allow you to change any area of memory except: 

• The A LT program 

• The text area 

• Any area used to hold the machine-language program after assembly 

If you get a "NOT DATA LOCATION"error, you1l know that you're out of a data area. By the way, this 
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is done, believe it or not, to keep the A LT program and any program you might enter, under control, and 
not for reasons of secrecy! 

To Sum It All Up 
To review what we've learned in this lesson: 

• A register is a special fast-access memory location in the microprocessor used to hold temporary 
results 

• Registers are either one byte (8 bits) or two bytes (16 bits) long 

• The registers are named A, F (Flags), 8, C, D, E, H, L, IX, IY, SP, and PC 

• There is a duplicate "primed" set of the A, F, 8, C, D, E, H, and L registers 

• Some registers may be grouped together as "register pairs" - AF, BC, DE, and HL 

• Binary notation represents data with binary digits of O and I 

• Bit positions represent powers of two starting with 2 to the zero power (I) on the right and increasing 
to the left 

• Numbers can be converted from binary to decimal by adding together the "weights" of 128, 64, 32, etc. 

• Numbers may be converted from decimal to binary by seeing which powers of 2 "go" into the decimal 
number 

• Hexadecimal representation is a shorthand notation for binary numbers 

• Hexadecimal digits are O through 9 and A through F 

• To change from binary to hex, convert 4 bit groups into hex digits. To reconvert, reverse the procedure 

• The ZR command lets you change register values 

• The ZT command lets you display memory areas 

• The ZM command lets you moqify memory locations, as long as those locations are not being used by 
ALT or user programs 

For Further Study 
Appendix I ALT Commands 
Appendix III Binary/ Decimal/ Hexadecimal Conversions 
Appendix IV Conversion Techniques 
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Load LESS3 from cassette. 

Lesson 3 
Assembly Language 

In this lesson we'll look at what assembly language is, and how an assembler converts an assembly­
language program to machine-language instructions. 

The Instruction Set 
The Z-80 microprocessor used in the TRS-80 Model I and Ill has a built-in "instruction set." This 
instruction set consists of dozens of different types of instructions. 

Computers started out as fast adding machines, and for that reason, a lot of the instructions are oriented 
toward arithmetic operations. Instructions that add two numbers or subtract two numbers are common. 

There are other types of instructions that are related to program flow - such instructions as "Jump to a 
Location" and "Jump if a Zero Result." 

Part of the problem in learning assembly language is in memorizing the different instructions, their 
effect, and their formats. 

All of the instructions of the Z-80 taken together are called the "instruction set" of the Z-80. The 
instruction set of the Z-80 is really the instruction set of the Model I and Ill as well, as no new 
instructions have been added by Radio Shack. 

Instruction Mnemonics 
It's much easier to say ADD Ethan to say "Add the contents of the E register in the cpu together with the 
contents of the A register and put the result in the A register." Lengthy instruction descriptions are simply 
denoted by an instruction mnemonic. There are two parts to the mnemonic, the operation and the 
operands. 

If you have loaded Lesson 3, you should have a display of the first part of a typical program on the screen 
in the text area. Look at some of the text under the OPCODE column. 

What you 're seeing there is the operation mnemonic for the instruction. This is sometimes called the op 
code, for "operation code." The opcode LD in the second line stands for Load. The opcode several lines 
down (use the P command to scroll), the CP, stands for Compare. 

The second part of the instruction mnemonic is the operands portion. This is sometimes called the 
argument portion. The operand and op code, taken together, define what the instruction does. 

The operands for the LD in the second line are E,0, which, when taken together with the LD, stands for 
"Load the E register with a value of 0." 

The CP line really means "Compare the contents of the A register with a memory byte at an address 
pointed to by the contents of the IX register plus !."(Quite a mouthful, eh? Don't worry about what the 
instructions do at this point. We11 be getting into that soon enough!) 

Comment Lines 
Any line that starts with a semicolon is simply a comment line and is not treated as an instruction. Any 
text in the last part of the line that has a semicolon before it is considered a comment, also. 

You can either load the Lesson File for the programs in the following lessons, or you can key in the 
programs shown in the lessons for practice. If you do the latter, you don't have to put the comment lines 
or comment "fields" into the program. They will not affect the program. 
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Labels 
The BUBSR'I: BUBOIO, and BU8020 names are called "labels." A label is used in assembly language in 
lieu of a line number as in BASIC. They are equated to the memory location at which the instruction is 
stored. The LD E,O instruction, for example, might be stored in RAM memory location OCOOOH, but 
the label BOBSRT would he the label of the instruction during assembly. 

The Assembly Process 
The entire collection of text that defines Z-80 instructions and comments constitutes an "assembly­
language" program. What do we do with it? How do we feed it into the computer? 

The Z-80 microprocessor cannot accept text and decode it. Maybe the next generation of microproces­
sors will. We have to take the text representing the assembly-language program and convert it into a 
form that the Z-80 can understand -- binary ones and zeroes. 

This process is called "assembly." The ALT has a built-in assembler that will translate the text of the 
program in "assembly language" into "machine language," the binary ones and zeroes. 

The command for this is 

A 

for Assemble. Enter an A now for the command. 

You should have seen a rapid display of the text in the assembly-language portion "scrolling up" on the 
screen. At the end, you'll see something that looks like Figure LESS3- I. 

THESE LOCATIONS 

PC A AB S Z H P N C B C D E H L IX IY SP iMAY BE DIFFERENT 

~~!:~.!" .!.!.!.'.:. ! . :} ... ' ... ! ... : .. !. -· ! ... ~ .. !:~ ... ~!: .. !:: ... ~;. .. ::~ .. ~:.. -~-~!:~.;.~~!: .~::::~ .. 
STATU OCN CONTENTS LINE LABEL OPCODE OPERAND COMMENT 

596 OC>099 :••••0 ••• .......... •••••• .. •LES~ 3••• 0 •u•u••••••••• 
B596 00100 ; BUBBLE SORT 
B596 IE 00 00110 BUBSRT LD 
B598 DD 21 00 BO 00120 BUB010 LO 
B59C 06 1 F 00130 LO 

E,0 
IX,7900H 
B.31 

LOCN 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 

MOOE=EDIT SPEED=9000 FREE MEMORY=18623 BP @ FFFF,FFFF.FFFF,FFFF 
COMMAND= 

Figure LESS3-1. Sample Assembly 

The portion on the left oft he text area represents the machine-language output of the assembler. This is 
sometimes called "object language" and the assembly-language text is sometimes called "source 
language." 

The hexadecimal values under the CONTENTS column are the actual hexadecimal codes, which, when 
converted to binary values, represent the codes for each instruction in the assembly-language program. 

What have we really done at this point? We've really only used a program to translate a more 
English-like form of a program into binary ones and zeroes, the program being the assembler in ALT 

The machine-language form is on the screen. The actual machine-language values are also in memory at 
this point, and the memory locations where they are stored are shown in the LOCN column. 

The LOCN column in the second part of the screen shows a hexadecimal RAM location for the 
machine-language program. Note that the locations do not increment by one for each instruction. That's 
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Assembly Language 3 
because the machine-language codes vary in size from I to 4 bytes in length. The LD E,O instruction, for 
example, is 2 bytes long in machine-language form. The CP (IX+ l) is 3 bytes long. 

ALT is different from some assemblers that do not put the machine code in memory after assembly. In 
these assemblers the "object code" goes onto a cassette or disk file. 

Note that there is generally a "one-for-one" correspondence between an assembly-language form of the 
instruction and the machine-language form of the instruction. One machine-language instruction is 
generated for each assembly-language instruction. Comment lines are ignored and do not generate any 
object code, along with certain other types of assembly-language text. 

The A command can be used to assemble any assembly-language program you have in ALT. You may 
create your own program, using the Edit Mode Insert and Delete commands, or you can assemble 
existing assembly-language programs from the Lesson File. 

If you have a line printer on your system, you can use the 

A LP 

form of the Assemble command to get an assembly-language listing of the program in ALT. Try this 
form of A right now, and you should get a printout corresponding to the screen display. 

Another form of A is 

AWE 

This will halt the assembly if any assembly errors are found, with the type of error displayed under the 
STATUS column for the appropriate instruction. 

Executing the Program 
Once you have assembled a program you can execute it by using A LT. A Lr does not allow execution of a 
program directly. It looks at each machine-language instruction in memory, decides what it does, and 
then simulates the execution exactly. This means that the execution will go at a slow rate, but that ALf 
will be easily able to detect when you have made errors in the program that would cause the program to 
jump out of the program area or to cause data to destroy other instructions in the program. 

To execute any program under ALf, get an error-free assembly listing, and then do 

ZX MMMM 

where MM MM is a hexadecimal address corresponding to the location of the program (see the "LOCN" 
column in the fourth screen line). The address MM MM is optional. If you do not use it, the execute 
command will execute from the start of the current program in memory. 

Try it for this program. To get the maximum effect, trace the 7900H area by 

ZT7900 

assemble the program, and then execute it by finding the first address under the LOCN column and 
transferring control by the ZX command. 

You should see the program execute. As it does, you1I see the instructions (assembly language and 
machine language) "scroll by." You'll also sec the registers changing values and the memory trace area 
changing data too. Stop by pressing the RREAK key. 

A special form of the execute command, ZXS, lets you "single stcp"through each instruction. Try it now 
by ZXS MM MM. You'll have to hit any key for every instruction to he executed. 
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You can change the speed of execution by using the ZS command. The ZS command changes the 
execution speed. A O value is slowest, while a 9999 value is fastest. The format of ZS is 

ZS VVVV 

where VVVV is the O to l)999 value. 

Try 0. 9999, and other values, and repeat the execution. 

ZS is valuable because you can actually see the registers changing values as instructions are executed. 
You may wish to vary the speed depending upon the program. If you understood what a program did, 
then you'd run it at a high speed. If you did not understand certain parts of it, then you'd run it ata slower 
speed and observe the results. 

The register display area shows the values in the registers while the program is executing. You can use the 
ZR command to change the values in t.he registers before execution or at certain other times. 

Other Commands 
Before we get into the discussion of actual instructions let's mention some other commands that we 
neglected before: 

• To get back to BAS IC, reset the system as you would normally. Any program or data you have in the 
ALT buffer will he lost; you'll have to reload ALT to continue. 

• The Hardcopy command lets you get a listing of the assembly-language portion of the text only (not 
the machine language) on your system printer. The format for Hardcopy is 

HLLL:MMM 

where LLL is the starting line number and MMM is the ending line number. 

• The N command renumbers the assembly-language lines. The format of N is 

NLLL,11 

where LLL is the starting line number for the renumber and II is the increment. Doing a 

N.200,20 

would renumber the current lines with the new Jines starting at line number 200 and increasing by 20 
for each line. 

• Another form of the Insert (l) command lets you insert lines between any existing lines. The format of 
Insert for this purpose is 

!LLL,11 

where LL Lis the line number for the insert point and ! I is the increment. If you had text line I 00, 110, 
120, 130, and so forth, and you wanted three new lines between lines 120 and 130, you might say 

112.1,1 

The Insert mode would then be active and you'd see line 120 displayed in the text area, followed by the 
number 12 l. You could then enter the 3 new lines and press BREAK to exit. If you wished, you could 
then use the renumber command (N) to renumber. 

if the Insert line number exists, the Insert mode will give an error message "UN E EXISTS." Inserts can 
be done until the line numbers increment up to an existing line number. If you run out of space, simply 
renumber by N and continue the lnserL 

The W command lets you Write an assembly-language file to cassette or disk. The format of W is 

WNAME 
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Assembly Language 3 
where NAME is the name of the file. Note that the file written is the assembly-language text only. It is not 
a file that can be run as a program. You can only use it to assemble under ALT. If you don't provide a 
name for the W command, the name "NONA ME" is used. 

A special form of the trace command, ZTT, displays a memory area in ASCII format. ASCII is a "text" 
display; any printable characters will be displayed as the characters. Any data that does not represent an 
ASCII character will be represented by a period. 

The ZB and ZZ commands are used to set and clear (Zap) "breakpoints:' execution "stop points." We11 
cover breakpointing in a future lesson. 

Using the Editor, Assembler, and Interpreter 
You can switch back and forth between the Edit mode, assembler, and interpreter (execution controller) 
at will. However, editing the assembly-language text by Delete or Insert will destroy any machine­
language program in memory, and you will have to reassemble by the A command. 

In lessons to come we11 explain in detail what we're doing, so don't feel too badly if you feel lost at this 
point. We11 review the commands as we use them, and you should be an "old hand" after a few lessons. 

To Sum It All Up 
To recap what we've covered in this lesson: 

• The instruction set of the Z-80 includes dozens of instructions, some relating to arithmetic operations 
and some relating to program control 

• The instruction set is abbreviated by using mnemonics for the operation and the operands of each 
instruction 

• Comment lines do not generate machine-language code 

• Labels are used to represent an instruction by a symbolic form, rather than as an absolute location 

• An assembler converts assembly-language code into the machine-language ones and zeroes that the 
Z-80 requires for executing instructions 

• ALT executes machine-language instructions in memory by "interpretation" allowing complete 
control over the execution, but at slower speeds 

• The H command allows hardcopy printing of the text 

• The N command renumbers the text 

• Another form of Insert lets you insert assembly-language lines between existing lines 

• The W command lets you write out an assembly-language file to cassette or disk 

For Further Study 
Appendix I ALT Commands 
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Load LESS4 from cassette. 

Lesson 4 
Loading Registers 

Up to this point we haven't done anything in the way of practical examples of assembly language. In this 
chapter we'll start doing some "useful work" with assembly language. Since we'll be continually using 
the cpu registers that we discussed in Lesson 2, we'd better get some practice in manipulating them. In 
this lesson we'll find out how to "load them"with data and how to move that data around within the cpu. 
(In the next chapter we'll see how data can be transferred between the cpu registers and memory.) 

First of all, you might glance back at Lesson 2 to review the register "architecture:' a fancy word for 
describing what registers are available for the assembly-language programmer and what their chief uses 
are. 

The "general purpose" cpu registers are the A, B, C, D, E, H, and L registers. They're used to manipulate 
8 bits of data at a time. The "main" register among these is the A register, which is an A(cummulator) 
register. This is somewhat of an archaic term that means that this register is used to accumulate results of 
adds, subtracts, and other operations. We can do things with the A register that we can't do with the 
other general-purpose registers because there are special instructions that operate with the A register 
alone, such as "ADD A;' which adds an 8-bit number to the contents of the A register. 

Remember that the general-purpose registers can be grouped together to make up 16-bit registers. The B 
and C registers make up a 16-bit BC register, the D and E registers make up a 16-bit DE register, and the 
Hand L registers make up a 16-bit HL register. The A register can also be grouped together with the F 
register, but this is for the convenience of "stack operations" (which we'll discuss in another lesson) and 
the A and F do not make up a true 16-bit register. 

When the registers are grouped together as 16-bit registers, the H L register becomes like the A register. It 
is a special 16-bit "accumulator" that is the principle register used for arithmetic operations. 

The remaining registers are not "general-purpose" registers, but are used for stack operations (SP), 
indexing operations (IX and IY), or program control (PC). 

There are also the R and I registers, which are not used in simple programming, but which perform 
memory refresh operations (R) and interrupt-processing operations (I). We won't be discussing either of 
these operations in this book, as they are primarily "hardware" functions related to system operation. 

Loading 8-Bit Registers 
Let's first look at simple "loads" of the general-purpose 8-bit registers. Enter lines I 00 through 300 of the 
following code (reload ALT to get a "blank screen" and then use the I command to start the entry), and 
assemble, or use Lesson 4 directly from disk as it is. There's no need to enter the comments after the 
semicolon, as we've included them just to explain the operations, although you can if you wish. We'd 
recommend entering the code from the keyboard rather than using the existing "file" to get some 
experience in using the Editor and Assembler. 

100 ;LOAD THE 8-BIT REGISTERS 

110 START LD A,!5!5 ;load A with 55 
120 LD B,!5!5H ;load B with 85 
130 LD c,o ;load C with 0 
140 LD D,2!5!5 ;load D with 255 
1 !50 LD E,OFFH ;load E with 255 
160 LD H,176 ;load H with ?? 
170 LD L,128 ;load L with ?? 
180 END ;end this section 
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Ok, are you ready to assemble? Assemble by entering A and check for errors. If you have a "clean" 
assembly, you should ~ee the display shown in Figure LESS4- l, after doing a P#. If you have errors, go 
back and correct the individual lines hy using the Edit commands and List until you have the same lines 
of code. ·rhen reassemble until you have no errors. 

PC AH AB S Z H P N C 8 C D E H L IX IY SP 
FFFF FF l 1 l l I 1 1 1 1 1 1 1 1 l FF Fr FF FF FF FF FFFF FFFF FFFF 

STATUS LOCN CONTENTS 
7B:C4 
7B:C4 
7B:C4 3E 37 
7B:C6 06 55 
78:C8 OE 00 

LINE LABEL OPCODE OPERAND COMMENT 
00099 ;••1o••••••• .. •• .. *•,.*•••LESSON 4 • ., ...... ,. ...................... . 
00 I 00 :LOAD THE 8•BIT REGISTERS 
00 I IO START LO A,55 
00120 LO B,55H 
00130 LO C,O 

LOCN 00 Ol 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 

MOOE=Eorr SPEED"'9000 FREE MEMORY= I 9452 BP @ FFFF,FFFF,FFFF,FFFF 
COMMAND= 

NOTE: "i.OCN" VALUES MAY 
VARY FROM THOSE 
SHOWN. THERE MAY 
BE OTHER MINOR 
FORMAT DIFFERENCES 

Figure LESS4-1. lesson 4 Assembly 

Before you "execute"the program, look at the register display at the top of the screen. Let's review what 
eac~ of the labels stands for. 

The PC is the Program Counter. It contains the location of the machine-language instruction currently 
being executed. The PC is l6 bits long, and the four hexadecimal digits represent those 16 bits in a 
"shorthand" hex notation 

The AH label stands for"A register in Hex." Since the A register is 8 hits long. there are two hexadecimal 
digits to represent what it is holding. The AB label stands for "A register in Binary." This is the binary 
representation of the A register in 8 bits, which will be Os or Is. 

The next 6 labels, S, H, P, N, and Care the "flags" of the F register. We won't be using these in this 
lesson, but you might keep your eye on them to see how they change throughout some of the following 
programs. They generally change to reflect the results of arithmetic and other processing. 

The next labels are for the 8, C, D, E, H, and L registers. As these are 8-bit registers they have two 
hexadecimal digits each. The last three labels are l X, IY, and SP; we won't be using these registers in this 
lesson. 

Now set the speed of execution by 

zso 

This is a "slow speed" setting of about l instruction per three seconds that will allow you to watch the 
registers change. 

Ready to execute? Enter 

zx 

to execute from the START of the program. 

You'll see the PC registt~r change as each instruction executes. You'll also see each register change as it is 
"loaded" with a binary value. After the program has stopped, you'll see the display shown in Figure 
LESS4-2. 
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Loading Registers 4 
THIS VALUE WILL BE DIFFERENT FROM THAT SHOWN 

/ 
THESE }ALUES WILL BE DIFFERENT FROM THOSE SHOWN 

PC AH AB S Z H P N C B C D E H L IX IY SP 
FFFF 37 00110111 1 1 1 1 1 1 !5!5 00 FF FF BO BO FFFF FFFF FFFS 

STATUS LOCN CONTENTS LINE LABEL OPCODE OPERAND COMMENT 

(THIS AREA AREA WILL HAVE 
TEXT IN IT) 

LOCN 00 01 02 03 04 0!5 06 07 08 09 OA OB OC OD OE OF 

.................................•...................................................•.................... 
MODE=EDIT SPEED=9000 FREE MEMORY=21 360 SP @ FFFF,FFFF,FFFF,FFFF 
COMMAND= 

Figure LESS4-2. Lesson 4 Register Display 

Each of the 7 registers has been loaded with a data value. Look at the A register, for example. In the 
source code line, we had a "LD A,55" instruction, standing for "Load A with 55:' If you look at the AB 
display, you'll see 00 I IO 111, which is the binary equivalent for decimal 55. The hexadecimal version of 
this (37H) is shown in the AH display. 

What about the B register? We loaded it with a SSH. The "H" is a special hexadecimal suffix which says 
that the number for the load is in hexadecimal in the source code line. Sure enough, if we look at the B 
display, we1l see a SSH. 

Look at the display for C, D, E, H, and L. Do they correspond to the values that we specified in the 
source lines? 

By the way, what is the largest number that can be held in 8 bits? In other words, what is the largest 
number that can be loaded into an 8-bit general register? We've loaded the D and E registers with this 
value, which is a decimal 255, or a hexadecimal OFFH. 

We11 leave the conversion of the decimal values 176and 128 up to you. These values are loaded into the 
Hand L registers, respectively, and you can find the equivalent hex values by looking at the contents of 
H and L from the display. 

Immediate Loads 
This type of instruction used an "addressing" mode called "immediate" addressing. In this type of 
addressing the data for the instruction is contained in the instruction itself. Look at the assembly listing 
for the LD H, 176, for example. 

In this case we wanted to load 176 into the H register. The value of 176 decimal is (as you've figured out) 
OBOH, and if you look in the machine-language data for the LD H, 176, you'll see a 26 byte, followed by 
a BO. In fact, all of these instructions have the "immediate" 8-bit data to be loaded in their second byte. 

Anytime that you see an "LD" in the source line, followed by the "mnemonic" of an 8-bit general 
purpose register, followed by a value in decimal or hexadecimal without parentheses around the value, 
the LD will be an "immediate 8-bit load" that loads data into the register as we've seen. 

Loading 16-Bit Registers 
How about loading 16-bit registers with immediate data? ls the procedure the same? The LD for 16-bit 
registers is very similar. Again, we've got an LD mnemonic, followed by the register mnemonic, followed 
by the data value without parentheses. 
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ro see an example of 
in the sm.m:e file. 

dekte lines JOO through 180. and then enter the following code. or use what is 

l 90 ; 1 6-BIT LOADS 

.200 NEXT LO 

210 

220 
2,30 

LO 
LD 
ENO 

BC,1000 

DE,OFFFFH 

HL., 18H 

;load BC with !000 
;load DE with maximum 
;load HL with 18H 
;end 

Enter the source code, check it over to see that it corresponds to the source code above, and assemble it. 
If you have no assembly errors, execute the program by doing a 

zx 

After executed t.he program, look at the register display. As you might have guessed, the three 
instructions a hove load the BC register "pair" with a value of decimal l000. the DE register pair with 
hexadecimal OFFFFH, and the HL register pair with 18H. How does this appear in the display? 

Look at the Band C registers first. When loaded together, they act as a single 16-bit register with B being 
the "upper" 8 bits and C being the "lower" 8 bits. Bis called the "most significant byte" and C is called the 
"least byte." 

Let's see, !000 in binary is OOOOOOI I l I lOlOOO or in hexadecimal, 03E8H. Ifwe look at B we can see that 
it contains the most significant byte of 03H, while C contains the least significant byte of ESH. Taken 
together, the value is 03E8H, what it should be for decimal 1000. 

Now look at the D and E registers. Here the load was ofOFFFFH. What is OFFFFH in decimal? It turns 
out that OFFFFH in hex is decimal 65,535, the largest number that can be held in 16 bits, and this value is 
in D and E, with each holding FFH. 

One more for practice. HL was loaded with 18 H. What should the result be in Hand L? A value of 18H 
in 16 bits is 00000000000 I !000, with the most significant byte equal to OOH, and the least significant byte 
equal to 18H. H., therefore. holds OOH, while L holds l 8H. Note that the number is "padded"with zeroes 
to the left to make up 16 bits. 

Now look at the instructions for the 16-bit LDs. The machine-language code for the instructions is on 
the left of the assembly display, or on the left of a line printer listing of the assembly. Since the data to be 
loaded into the register pairs is l 6-bits long, we'd expect to see 16 bits or 2 bytes of immediate data, and 
that's what we see for the LDs. 

The LD BC, I 000, for example, consists of a byte ofO J for the "operation code" of the LD and two bytes 
of E8H and 03 H for the data. But wait, there's something wrong here! The data appears to be reversed. It 
looks like the most significant byte follows the least significant byte! Why? 

It turns out that this is the standard way the Z-80 represents 16-bit data- least significant byte followed 
by most significant byte. You'll see this form of representation in all 16-bit data - immediate data, 
addresses, and other data, so get used to it! In the LD HL, 18H case, for example, we see 18H, followed 
by OOH. We'll remind you of this representation from time to time, lest you forget. 

Transferring Data Between CPU Registers 
·We've seen how to load 8- and 16-bit registers with immediate data, but what about "moving" data 
between cpu registers? This is done all the time in assembly-language programs. Often we want to move 
data from the A register into another 8-bit register and back again. 
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Loading Registet~; 4 
Again we can use the LO instruction. This time, however, we won't be loading immediate data but 
copying the contents of one register into another. 

Delete source lines 190 through 230, and enter the following program, or use the existing source lines 
from the program in RAM. 

240 ; LOAD BETWEEN REGISTERS 

250 LAST LO 

260 LO 

270 LO 

280 LO 

290 LO 

300 END 

A,OBH 

B,A 

C,ODH 

D,C 

C,OCH 

;immediate load of OBH 
;now in B 
;immediate load of ODH 
;now in D 
;immediate load of OCH 
;end 

This short program shows you how the registers can transfer data to each other. Enter it, edit it until it 
assembles properly, and execute it at slow speed. At the end, B should contain OBH, C should contain 
OCH, D should contain OOH, and A should contain OBH. 

Any 8-bit register can be loaded by any other 8-bit register simply by using the LD D,S form of the load 
instruction. In this instruction, the proper assembly-language form uses "D" for the "destination" 
register and "S" for the "source" register. The source register always loads into the destination register. 
At the end of the load, the source register remains unchanged. Try entering your own source code and 
moving data between other registers, and you'll see how it works. 

What about moving data between 16-bit registers'?Can we do a LD HL,BC, for example. to load the HL 
register pair with the contents of the BC register pair'? No, these instructions are not implemented in the 
Z-80. You'll have to do a 

LO 

LO 

H,B 

L,C 

;load H with H 
;load L with C 

to accomplish the load, or use the "stack" as we'll show you a little further on. 

It's also possible to perform loads of 16-bit registers to H L, IX, and IY by first loading the register with O 
("clearing" the register) and then adding another register pair to HL, IX, or lY. We'll discuss these 
special adds in another lesson. 

To Sum It All Up 
To recap what we've learned in this lesson: 

• You can load any general-purpose 8-bit register (A. B, CD, E, H, or L) with an 8-bit immediate value 
by an "immediate" load 

• You can load any 16-bit general-purpose register pair with a 16-b.it immediate value by an "imrne­
diate" load 

• Sixteen-bit data in the Z-80 is always ordered least significant byte, followed by most significant byte 

• You can load any 8-bit general-purpose register with any other 8-bit general-purpose register hy an 
LO of the form LD D,S, where S is "source" register and "D" is "destination" register 

• You can't load a 16-bit register pair with another 16-bit register pair directly, but you can do it 
indirectly by loads on individual 8-bit registers or other techniques 

For Further Study 
LO 8-bit immediate instructions (sec Appendix V) 
LD 16-bit immediate instructions 
LD D,S instructions 
ADD HL, ADD IX, ADD IY instructions 
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Lesson 5 
Loading and Storing 

Between CPU Registers and Memory 

Load LESS5 from cassette. 

In the last lesson we discussed how data could be loaded and moved around between cpu registers. In 
this lesson we'll see how data can be moved between the cpu registers and memory. 

When data is moved from memory to a cpu register, a "load" is performed. When data goes the other 
way, from a cpu register to memory, it is said to be "stored." Here again, the meaning of these terms is 
historical and dates back to early computers. 

In either the load or store case, the general instruction type involved is an "LD." Other microprocessors 
use an "ST;' but the Z-80 uses an "LD" rather than a store mnemonic. 

In general, you can tell which direction the transfer will be by the same "source," "destination" format 
that we saw in the LD of cpu registers. Parentheses are used to denote that the operation is to and from a 
memory location rather than an immediate operand. 

The destination is always first, followed by the source in the format LD D,S. As an example, 

LD (8000H),A ;store A to RAM 

stores the contents of the A register (the "source") to memory location 8000 H (the "destination"). On the 
other hand: 

LD A,(8000H) ;load A with RAM value 

loads the A register with the contents of memory location 8000H. 

Eight-Bit Direct Loads and Stores to Memory 
Enter the source program shown below, or use the source from the Lesson File. 

1 00 ; 8-BIT DIRECT LOADS AND STORES 

110 START 

120 

130 

140 

150 

LD 

LD 

LO 

LO 

ENO 

A.33H 

(7900H),A 

A,0 

A.(7900H} 

;load A with 33 H 
:store in 7900H 
;clear A 
;load A with 7900H 
;end 

Check the source lines by reviewing them with the Edit commands. Again, you don't need lo enter 
comments unless you wish. When you have a good set of source statements, assemble the program by the 
A command and check for errors. If you have no errors, go on to the next part, but if you have errors, 
re-edit and reassemble. 

Before executing this short program, "trace'' memory locations 7900H through 791 FH by entering 

ZT7900 

After the ZT, you should see the 7900H area displayed in the experiment area. 

Now execute the program by doing 

zso 
zx 



5 Loading and Storing Between CPU Registers and Memory 

The program will first do an immediate load of 33H into the A register. lt will store the contents of A into 
RAM memory location 79001-f. The A register will then he cleared by an immediate load ofO. Finally, a 
load of location 7900H will be done. This will load the 33H at 7900H back into the A register. 

This type of load and store uses direct addressing. In direct addressing the RAM address for the load or 
store is directly specified in the instruction it.self. Look at the LD (7900H),A or LD A,(7900H) 
instruction. In the instruction, you 'H see the address for the load or store in standard Z-80 address 
format in the second and third bytes ····· 0079H. 

Direct loads and stores are the easiest way to store 8 bits from the A register into a single memory byte or 
to load a single memory byte into the A register. What about the other 8-bit general-purpose registers? 
Can we do direct loads and stores on them, also? 

Unfortunately, there are no instructions to do a direct load or store of the other 8-bit registers. There are 
no LD B,(7900H) instructions, for example. We have to use other means to move data between these 
registers and memory. 

Eight-Bit Indirect Loads and Stores 
One way to load and store the 8-bit registers is by register indirect addressing. In this type of addressing, 
the H L register, BC register, or DE register is used as a "pointer" register. pointing to the RAM memory 
location for the load or store, as shown in Figure LESS5-L 

30 

MEMORY 
ADDRESS 

7900H 

7901H 

7902H 

7903H 

7904H 

7905H 

7902H 
HL, BC, OR DE 

REGISTER 

POINTS TO 
MEMORY LOCATION 

Figure LESSS-1. Pointer Registers 



Loading and Storing Between CPU Registers and Memory 5 
To see how this works, delete lines 100 through 150, and enter the program below, or simply use the 
existing source code from the Lesson File. 

1 60 ; 8-BIT INDIRECT LOADS AND STORES 

170 NEXT LO HL,7900H ;pointer to 7900H 
180 LO A,OAH ;load A into A 
190 LO B,OBH ;load B into B 
200 LO C,OCH ;load C into C 
210 LD D,OOH ;load D into D 
220 LO E,OEH ;load E into E 
230 LO (HL),A ;store A 
240 INC HL ;now 7901 
250 LO {HL),B ;store B 
260 INC HL ;now 7902 
270 LO (HL),C ;store C 
280 INC HL ;now 7903 
290 LO {Hl..),D ;store 0 
300 INC HL ;now 7904 
310 LO (HL),E ;store E 
320 LO A,(HL) ;load A with 7904 
330 LO B,(HLl ;load B 
340 LO C,(HL) ;load C 
350 LO O,(HL) ;load D 
360 LO E,{HL) ;load E 
370 END ;end 

-------------~~---------------
After you've checked the source lines and assembled without any errors, execute the program by 

zx 

What did you see? First of all, the HL register is set up as an "indirect pointer" register by loading it with 
7900H, in an immediate load. Next, the A, B, C, D, and E registers are loaded with the values of OAH, 
0BH, OCH, OOH, and 0EH, respectively. 

Now the A register is stored "register indirect"' by the LD (H L),A instruction. What would you think 
that this instruction does? We know that instructions generally use the format "destination"/ "source." In 
this case it looks like the source is A, and the destination is (H L). 

Just as the parentheses around (7900H) specified a RAM memory address for a direct addressing 
instruction, the (HL) specifies a memory address. In this case the memory address is the "pointer" 
address contained in the HL register. As this was loaded with 7900H initially, the LD (HL),A instruction 
is logically equivalent to an LD (7900H),A. 

In the next few instructions we're storing the other registers, B, C, D, and E, to memory also, using the 
HL register pair as a pointer. Between each store, the H L register is "incremented" by the instruction 
INC HL. Look at how HI. changes as you execute the program. lt changes by l for each INC. The 
increment and its inverse, the DEC H L, are common ways to modify H L when it is used in this register 
indirect addressing mode. 

After we've stored A, B, C, D, and E into memory Jocfttions 7900H through 7904H, HL points to 7904, 
which contains 0EH. As a grand finale, we're loading the registers using HL as a pointer. The 5 loads 
work the same way, except that the "source" is now (BL) and the destination is the register. 

Using H Las a pointer is a common way to do 8-bit stores and loads for A through E. It works best when 
the area in memory is a "table" of data, with "contiguous" locations, rather than memory locations 
scattered around memory in "random" locations. Why? 
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If we used H Las an indirect pointer for random data, we'd have to load it with new address values for 
each load or store. For example, if we wanted to store A. C, and E in three different memory locations we 
might have something like 

LO HL,LOCA :first location 
LO CHL>,A ;store A 
LO HL.LOCB ;second location 
LO (HL),C ;store C 
LO HL,LOCC ;third locations 
LO CHL),E ;store E 

Here, we've used "LOCA;' "LOCB;' and "LOCC" to represent absolute addresses that might have been 
BOOOH, B023H, and B IOOH, or similar addresses. You can see that this "random addressing" using the 
HL as a pointer is not too efficient, compared to the one-byte INC HL or DEC HL 

H Lis the main register used in this indirect addressing mode. As a matter of fact, the H in H L stands for 
"High" and the Lin H L stands for "Low" -- the high and low being the high and low address bytes. And 
no, I'm not just making this up either ... 

The Z-80 is a relative of the 8080 microprocessor and contains the instructions of the 8080 as a "subset:' 
The 8080, in turn, is a relative of the 8008, an even more basic microprocessor. Originally (in the 8008) 
the HL register was the only register that could be used for indirect addressing. In the 8080, however, 
register pairs BC and DE were also given their own indirect capability, but only for the A register. To see 
how these instructions work, delete lines 160 through 370, and enter the source code below: 

380 ; 8-BIT INDIRECT ADDRESSING USING BC AND DE 

390ANUDR LO BC,7900H ;set up address 
400 LO DE,7908H ;set up address 
410 LO A,0AAH ;load 170 
420 LO (BC),A ;store into 7900H 
430 LO (DE),A ;store into 7908H 
440 END ;end 

This program doesn't do a great deal, but it does show you that BC and DE are used in exactly the same 
way as HL in the indirect addressing mode, but only for the A register. 

Assemble and execute the program. 

Wow! Too many combinations of things, eh? You can use H Las an indirect pointer for any register, but 
you can only use BC or DE as an indirect pointer for A. but only if the phase of the moon is 
right. .. That's the way it is in Z-80 assembly language; you must learn which registers use which 
addressing modes. Although the Z-80 instruction set is not as "generic" as others, it is very powerful in 
spite of the special cases! 

Sixteen-Bit Loads and Stores 
All of the loads and stores above have been 8-bit loads and stores. What about moving 16 bits of data 
from cpu registers to memory? This is possible by using the 16-bit direct addressing mode, where the 
instruction contains the memory address to be used. No "register indirect" operations are possible. 

BC, DE, HL, SP, IX. and IY can be stored in this manner. We'll cover only BC, DE, and HL and leave 
the other registers for later discussion or your own study. 

To see how these direct loads and stores are done, delete lines 380 through 440 and enter this next set of 
code: 
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4!50 ; 1 6-BIT DIRECT LOADS AND STORES 

460STILAN LD BC,1234H ;load sample data 
470 LD DE,OABCDH ;load sample data 
480 LO HL,1000 ;load sample data 
490 LD C7900H),BC ;store 
500 LD (7902H),DE ;store 
!510 LD C7904H),HL ;store 
!520 LD BC,C7904H) ;load BC with I 000 
!530 LO DE,C7904H) ;load DE with 1000 
!540 END ;end 

Edit and assemble this program as you have been doing. When you have an error-free assembly, execute 
the program after first "tracing" the 7900H area: 

ZT7900 

zx 

What do we have during execution? You'd expect the contents of BC, DE, and HL to be stored in the 
experiment area starting at 7900H on. Let's see, 7900H contains 34H and 7901 H contains 12H. If we 
reverse those, we have 1234H, which is the contents of BC before the store. Aha! Note that again the 
Z-80 stored 16-bit data in "reverse format," putting the least significant byte first followed by'the most 
significant byte. Also, we used 2 memory locations, 7900H and 790 I H. The instruction itself points to 
the first byte, even though 2 bytes will be used. 

Now look at 7902H and 7903H. You'd expect these locations to contain the original contents of DE, and 
sure enough, CDH is in 7902H and ABH is in 7903H. The next two locations contain ESH and 03H, 
1000 decimal in reverse order. 

The last instructions load BC and DE with locations 7904H and 7905H, the decimal 1000 originally in 
the H L register. Note that again, the first byte of the data is specified in the instruction, but that 2 bytes 
are loaded from memory. 

IX and IY Used as Indirect Registers 
Up to this point we've avoided mentioning the IX and IY index registers. The IX and IY index registers 
are used in indexed addressing mode, a way of easily accessing sequential (rather than random) data that 
is grouped together in memory. 

The IX and IY can be used as indirect pointers also, in the same fashion as HL. Any time that an 8-bit 
load or store can be done with H L, you can do it with IX or I Y; from our work above, that means that IX 
and IY can be used with A, B, C, D, E, H, and L to load or store these 8-bit registers. 

You might experiment with IX and IY using these instruction formats: 

LD 

LD 

IX,7900H 

CIX),A 

;load address 
;store A 

This doesn't use the full capabilities of IX and IY, but does show you how they can be used in this 
"degraded" mode, a common way of using IX and IY in many programs. 

To Sum It All Up 
To review what we've learned in this lesson: 

• A load means that data will be loaded into a cpu register from memory 

• A store means that data will be stored into memory from a cpu register 
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• Both the load and store use the LD instruction mnemonic 

• The A register can be loaded and stored directly by using the direct addressing mode where the 
instruction contains the memory address to be used 

• Registers A, B, C, D, and E can be stored by using HL as an indirect pointer in the register indirect 
addressing mode 

• The BC and DE registers can be used as indirect pointers, but only for loading and storing A 

• Register pairs BC, DE, and HL (also SP, IX, IY) can be loaded or stored directly to or from memory 

• The IX and I Y registers can be used as indirect register pointers similarly to H L 

For Further Study 
Use of IX and IY as indirect pointers - - private study 
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Lesson 6 
Adding and Subtracting 8- and 16-Bit Numbers 

Load LESS6 from cassette. 

We haven't done much as far as using the Z-80 as a computer, in the common use of the word. All we've 
done up to this point is to "shuffle" data around between cpu registers and memory, an important task, 
but not all that exciting. In this lesson we'll get down to doing actual arithmetic with the Z-80 -- 8-bit 
and 16-bit additions. That may not sound like much in these days of$ IO calculators that perform square 
roots and more, but it's the foundation of much Z-80 assembly-language code. 

Eight-Bit Adds 
The Z-80 has one basic add: An 8-bit operand from a cpu register or from memory is added to the 
contents of the A register. The result is then put back into the A register. Let's see how this works. Enter 
the source code below, or use the existing source code from the Lesson File: 

1 00 ;8-BIT ADDS 

110 START LD A,100 ;100 to A 
120 LD B,150 ;150 to B 
130 ADD A,B ;add A and B 
140 LD (7900H),A ;save result 
150 LD A,37 ;37 to A 
160 ADD A,A ;add A and A 
170 LD (7901 H),A ;save result 
180 ADD A,10 ;add JO to A 
190 LD HL,7901H ;point to 7901 H 
200 ADD A,(HU ;add A and 790 I H 
210 END ;end 

-----------------------------
Edit the source code until it is identical to the source code above, except for the optional comments. 
Assemble the code to get an error-free assembly. 

Before you execute the code, use a slow speed and "trace" the 7900H area by entering: 

zso 

ZT 7900 

Here's what should happen on execution: You should see A loaded with JOO and B loaded with 150 by 
the two "immediate" loads. Now the ADD A,B should take the contents of Band add it to A. The result 
will be stored in memory location 7900H. A is now loaded with 37. Now A should be added to itself by 
the ADD A,A, and the result should be stored in location 7901 H. Next, 10 should be added to the A 
register. Next, the H L register pair should be loaded with the value 790 I H. HL will be used as a register 
indirect pointer to location 7901 H. The last operation adds the contents of A with the location pointed 
to by HL, location 7901 H. 

Execute the program now, and try to follow the operations. 

The result of the first add, ADD A,B, should have added the 150 in B to the 100 in A. A value of 150 
decimal is 96H, while a value of l00 is 64H. (You can check these values by looking at the immediate 
loads of A and B.) The result in location 7900H should be 250, or a value of FAH, and we can see from 
the trace that this is the value put in location 7900H. 
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The second add adds A to itself and puts the result in location 790 l H. This is a perfectly legitimate 
operation. (As a matter of fact, you can even do a LD A,A, although it's rather meaningless.) We started 
out with 37 decimal in A (25H), and we should wind up with 74 decimal in location 790 l H. Our trace 
indicates that location 790 I H is hexadecimal 4A, which is correct. 

The next add adds IO to the contents of A by an "immediate" addressing. The total of74 now becomes 84 
decimal. 

Our last operation adds location 7901 H, containing the 4AH, to the contents of the A register, a 54H. 
The result should he 74+84 or 158. Looking at the A register after the execution, we see that it contains 
9EH, which is equivalent to 158 decimal. 

In the program above, you can see the types of addressing modes that we can usc with 8-bit adds to A. 
The first is register-to-register -- another cpu register added to A, including A itself. 

The next addressing mode is the "immediate" type of addressing, which adds an immediate value from 
the instruction itself to the contents of the A register. 

The next is register indirect, adding a memory location pointed to by H L with the contents of A. 

We've left off another type of addressing mode which is also possible, indexed addressing, using the 
contents of the IX and IY registers; we'll discuss indexing in another chapter. 

This collection of addressing modes -- register to register, immediate, H L indirect addressing, and 
indexed addressing, is typical for all instructions that use the A register. The same addressing modes 
would be available for a subtract, an OR operation, or an increment of A. As each addressing mode 
counts for a separate instruction type, you can see where some of the many separate instructions of the 
Z':;.80 come from. Many instructions are just the same instruction with a different addressing mode! 

Sixteen-Bit Adds 
All 8-bit adds use the A register. What would you expect 16-bit adds to use? Right, the H L register, which 
is a "16-bit" accumulator. 

The H L register was used to perform 16-bit adds in the 8080 microprocessor; the Z-80, however, kept the 
original ADD and also added ADDs to two other registers, the IX and IY registers. So we can say that 
there are really three "16-bit" accumulators -- HL, IX, and IY, at least for adds. 

To see how these registers add two numbers, delete lines l00 through 2 IO, and enter the source lines 
below: 

220 ; 1 6-BIT ADDS USING HL, IX, IY 

230 NEXT LD BC,1000 ; l000 decimal 
240 LO DE,500 ;500 decimal 
250 LO IX,250 ;250 decimal 
260 LO IY,100 ; I 00 decimal 
270 ADD IX,BC ;250+1000 
280 ADD IX.IX ; 1250+1250 
290 ADD IY,BC ; 100+1000 
300 LO HL,2000 ;2000 to HL 
310 ADD HL,DE ;2000+500 
320 END ;end 

--------~--------------------
When you have an error-free assembly, execute the code by entering 

zx 

At the end of this program, the results will be in the HL, IX, and IY registers. We added the contents of 
the BC register pair to IX and then added IX to itself. The result should be 2500, which is 09C4H. 
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Next, we added the contents of the BC register pair to IY, 1000+ 100. The value I l 00 decimal is 044CH in 
hexadecimal, and this is what we should see in IY at the end of the program. 

The last 16-bit add added the contents of the DE register pair to the H L register. 500+2000, and there 
should be a 09C4H in H L after the program stops. 

How did these 16-bit adds differ from the 8-bit adds? For one thing, of course, twice the "width" of data 
was added, which means that sums up to 65,535 can be handled, rather than only O through 255. For 
another thing, the 16-bit adds are rather limited. The operand to be added to the contents of H L, IX, and 
IY must already be in another register! No sophisticated addressing modes are available for the 16-bit 
adds. 

Eight-Bit Subtracts 
The 8-bit subtract is very much like an 8-bit add. It operates only on data in the A register, and no other 
cpu registers, and has the same addressing modes. In the subtract, an 8-bit operand from another cpu 
register or from memory is subtracted from the contents of the A register, with the result going into the A 
register - it's identical to the ADD except for the basic operation and the fact that you don't need an 
"A" to denote the destination. 

To show you how the subtract works, delete lines 220 through 320, and enter the following subtract 
example, or use the source code from the Lesson File. 

330 ; 8-BIT SUBTRACTS 
340 NEXT1 SUB 
350 LD 
360 LD 

370 SUB 
380 LD 
400 LD 
410 LO 
420 SUB 
430 LO 
440 END 

A 

(7900H},A 

A,146 
13 
(7901 H),A 

A.100 

HL,7901 H 

(HU 

(7902H),A 

;subtract A from /\ 
;store result 
;load with 146 
: 146-13 
;store result 
;load with 100 
:set up address pointer 
:subtract 133 from 100 
:store result 
:end 

Check the source lines before assembling and then assemble to get an error-free assembly. Trace the 
7900H area as before. Execute by 

zx 

Now for the results. 

What would you expect the first subtract of SUB A to be? This instruction specifies that the contents of 
the A register will be subtracted from the contents of the A register. Since any number subtracted from 
itself is 0, you'd expect the result in 7900H to be 0, and it is. This is one way of clearing the A register. 
Another way, of course, is by doing an LD A,0. Which is better? 

Ordinarily, this is a question that wouldn't be too significant, but since A is cleared many times in 
assembly-language programming we might want to consider it here. The LD A,0 is a 2-byte instruction, 
while the SUB A is a I-byte instruction. The LD A,0 occupies twice as much memory and operates 
almost twice as slowly as the SUB A. It's better programming practice, then, to use a SUB A to clear A, 
although we'll see another clear of A, the XOR A, in another lesson. 

The next subtract subtracted an immediate value of 13 from the 146 loaded into the A register in the 
previous instruction. The result of l 33, equivalent to hexadecimal 85H, is in location 7901 Hafter the 
program end. 
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The next subtract is an illustration of a register indirect using the HL register. The A register is first 
loaded with 100 hy an immediate load. Next, the H L register is loaded so that it points to location 
790 I H. A subtract using the register indirect is then done, effectively subtracting 133 (in 790 I H) from the 
100 in the A register. What will be the result of this subtract'? We expect to get a -33. but get the result 
DFH in location 7902!1 instead. To answer that question we're going to have to look at number 
representation called "two's complement." 

Two's Complement Numbers 
Up to this time we've been working with "absolute numbers" held in 8 to 16 bits. The binary numbers 
we've considered have always been positive, integer values. This makes sense in many cases. Take the H L 
register values, for example. The H L was originally used to represent a memory address for O through 
65,535, and there is no such thing as a "negative address." 

However, we would like to he able to represent both positive and negative numbers. (I need some way to 
handle balances in my checking account. .. ) How is it done? 

The scheme that the Z-80 and almost all other microprocessors or computers use is called "two's 
complement." The format of two's complement numbers is shown in Figure LESS6- I. 

I;(: 13: 12:11: 10: 9: s : 7 : s: s : 4: a: 2 : 1 : e I 
t...__ _____ __ 

SIGN 15 MAGNITUDE 
BIT BITS 

SIGN BIT: 0= POSITIVE # 
1 NEGATIVE# 

Figure LESS&-1. Two's Complement Numbers 

The most significant bit of an 8 or 16-bit number is designated as a "sign bit." The remaining bits are 
"magnitude bits." 

If the sign bit is a 0, well and good. The remaining 7 or 15 bits represent the "magnitude" of a positive 
number. In 8-bit values you can therefore have positive numbers from O 0000000 (0) through O 1111111 
(+127). 

If the sign bit is a I, however, the number represents a negative value. In that case, change all the Os to Is, 
change all the Is to Os, and add ! . Why? A purely mechanical process that gives you magnitude of the 
negative value. 

Let's take the last subtract and show you how it's done. The result was DFH, or binary I IOI 1111. The 
most significant bit was a I, so the number is a negative number. Changing all ls to Os and all Os to Is 
gives us 00100000. Adding I gives us 00I00001. 00 l0000 I is 33 decimal, and therefore the negative 
number is -33, the result we should expect to get by subtracting 133 from IOO. 

Negative values of -I ( 11111111) through -128 ( l0000000) can be held in 8 bits. (Note that although we 
can hold a negative number of -128, the maximum positive number that can be held is + 127.) 
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Two's complement works exactly the same in 16 bits. The same actions are taken to convert. Look at the 
sign bit first, and if it is a 0, the number is a positive number from O (0000000000000000) through+ 32,767 
(011111111111 I 111 ). If the sign bit is a L the number is a negative number from - I ( 111 I I l I I l I I I I I I I) 
through -32, 768 ( 1000000000000000). 

Note that the two's complement number ranges are the same as BASIC integer values. All basic integer 
values are in reality two's complement 16-bit values! 

Why are two's complement numbers used'? So that we can easily do adds and subtracts with the ADD 
and SUB instructions in the Z-80. We don't have to laboriously check each number to see if it's positive 
or negative, we just go ahead and do the add or subtract --- the number will be adjusted accordingly. 
We'll discuss this more in Lesson IO, along with other arithmetic operations. 

To Sum It All Up 
To review what we've learned in this lesson: 

• Eight-bit adds use the A register as the destination and either another 8-bit cpu register ( A, B, C, D, E, 
H. L) or an 8-bit memory operand for the add. 

• Eight-bit adds can use register-to-register, immediate, register indirect, or indexed addressing modes 

• Sixteen-bit adds use either HL, IX, or IY as a "16-bit accumulator" 

• Sixteen-bit adds add the operand from another 16-bit register to the contents of HL, IX, or IY; no 
other addressing modes can be used 

• Eight-bit subtracts are virtually identical to 8-bit adds as far as the handling of operands and 
addressing modes 

• Two's complement numbers express both positive and negative integer values. lf the sign bit is a 0, 
then the remainder of the number determines the positive magnitude, otherwise a simple conversion 
must be done to find the negative number 

For Further Study 
Two's complement numbers -- Appendix VI 
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Lesson 7 

Adds, Subtracts, and Flags 

Load LESS7 from cassette. 

In this lesson we're going to investigate rhc Fiags of the Z-8(L The Fiags are a collection of 8 bits, as 
shown in Figure LESS7-!. There are really only six Flags, as two of !he 8 bits in the F ·'rcgi:;ter" are 
unused. 

F !FLAGS) 
REGISTER 

131T POSiTION 

t l CARRY FLAG 

'---.. ADO/SUBTRACT F!.AG• 

RAG 

HALF CARRY FLAG• 

X ·NOT USED 
• "!'WT Gt,NER#I.LLY ACCE.SS18lE 

TO PROGRAMMER ~· USEO 
FOR l!lliERNAl OPERATlONS 
IN Z·llO 

Figure LESS7-1. Flags 

The Flags are logically grouped together with the A register. but not in the sanic w,1y that Hi:, grouped 
with C. Dis grouped with E, and H is grouped ,,iHi L The alignnwnt oi the r register with Ai~ only a 
convenience in saving this pseudo-regisler pair of AF in the "slctck," an operation we'll discuss in another 
chapter. 

The Six Flags (and these are not necessarily o,er lcxa~) reflect the resuit~ of arithmetic and other 
instructions. as we'll see. The flags can aher the program flow, as they can he tested by "jump" 
instructions, which cau-;e jumps to different program code on the &ettings of ,he flags, which in turn are 
set by prior arithmetic. 

Here's an example: 

SUB 

JP 

B 

Z,EQUAL 

;A B 
;go if A=B 
;not equals here 

The first instruction above subtracted! he B register from the A register. The su bu act instruction affects 
most flags. If the result is zero, the Z flag is set as one of the last action~ in the subtract. The JP 
instruction is a "conditional jump" that jumps to location EQU AI. if the Z flag is set bu; otherwise 
doesn't "take the jump" and "falls through'' to the next inslruction in ~e•.J twncc. "fhe mnemonic "JP Z," 
means "Jump if Z flag set"; '.,t:t always means a I condition, while reset means a O condition. 

More on Adds and Subtracts - the Z Flag 
Let\ look at some of the flag action,, during 8-bit add;:; and ·rnbt rncts. as we'n• alrc·ady o;pert!'; on 1 hc~e! 
Enter the code below, or us,: the existing ,;onn:.c codt from the Lc-;:mn fik 



100; ARITHME'TIC FLAG ACTIONS 

t i O STAR'f LO 

120 LO 

130 SUB 

140 ,_,o 
150 SUB 
160 LO 
1"}0 SUB 

180 END 

A,33 

8,33 

B 

A,32 

B 

A,34 

B 

;A operand 
;register operand 
:13-33:c0 
:A operand 
;32-33 
;A operand 
;34-33 
;end 

Check the source code w see lhat it matches I.he listing above. Assemble the code so that you get an 
error-free assembly. 

Now st! th<.:: speed of !he Interpreter to the slowest setting by entering 

1.SO 

Thi,; will let you see the Flag settings as the instructions are executed at slow speed. Keep vour eye on the 
Z flag in the register disphty ,rnd observe how it changes in running the program above. 

Ok, ready? F.xecuts: the program by 

Did you catch the Z flag settings? The first subtract subtracted 33 from 33. The result of this was O in the 
A register, so the Z flag should have been set (!)to indicate Zern condition. The next subtract subtracted 
33 from 32. The result of this is -1, or FFH. definitely a "non-zero" condition, and the Z flag should have 
been reset (0) to indicate non-zero. The third subtract subtracted 33 from 34; this is also a non-zero 
result., and the Z flag should have remained reset at O for "NZ." 

if you didn't catch the flags the first time, nm the program again and try to observe the Z flag. 

The Z flag, therefore. is sd or reset according to the results of the subtract. It is also set for adds and other 
instructions. Here's an impc1rtant point, though: The Z flag and other flags are unaffected by certain 
instructions! All LD instructions, for example, leave the flags unchanged from what they were in the 
previous instrm:tion. 

In rnost cases you'll be using the flag setting directly after the add, subtract, or other processing in a 
conditional jump, so there won't be intervening instructions that could affect the flags. In other cases the 
"test" of the flags by a conditional jump may be several instructions away. It's important, therefore, to 
know which instructions affect the flags and which ones do not. You can find this information in 
Appendix V, where all f1ags are listed for every instruction type. 

The S(ign) Flag 
Another flag in th,: Flags register is the S flag, standing for "Sign." The S flag is set (I) if the result of the 
operation is negative and reset (0) if the result of the operation is positive Here again, the S flag is not set 
for all instructions !mt is set for adds, subtracts, and other arithmetic and logical operations. 

Execute the program above again, but this time watch the settings of the S flag. 

Got them'' You should have seen the S reset (0) as the first subtract of 33-33 was done. This indicates that 
the result is a positive number. (Zero is always a positive number in the Z-80. If we apply the rules of 
two's complement "notation" and look at the sign bit, we see a positive number with a magnitude of 
0000000.) 
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The next subtract was 32-33. The result here should have been a negative value of - l. The S bit here was 
set (l} after the subtract to indicate that the result was negative. 

The last subtract was 34-33 for a result of l, a positive number again. The S flag was reset (0} after this 
subtract. 

Here's one of those interesting questions (that usually occur at 2:00 a.m.) How does the Z-80 know 
whether we are subtracting in two's complement or in absolute form? In other words, we might he 
working with absolute numbers in A from 00000000 through Ill I l Ill (255) instead of two's comple­
ment numbers of- l 28 through+ 127. The answer is: The Z-80 doesn't know! H blithefully sets the S flag 
as if it were two's complement operations. However, we know, and if we are operating in absolute 
numbers up to 255, we ignore the S flag. 

The Compare 
There's an important variation of the SUB instruction that we've ignored up to this point This is the CP, 
or Compare instruction. The compare works exactly like the SUB, except that it does not put the result 
back into the A register. It simply drops the result into the "bit bucket" on the floor behind the TRS-80. 

What the compare does do, however, is to set the Z, S, and other flags. We can use the compare to test 
one operand against another without destroying the contents of A register. 

Delete lines !00 through l 80, and enter the source code below. 

1 90 ; ARITHMETIC FLAG ACTIONS 

200 START 1 LD 

210 LD 

220 CP 

230 LO 

240 CP 
250 LO 

260 CP 
270 END 

A,33 

B,33 

B 

A.32 

B 

A,34 

B 

;A operand 
;register operand 
;33-33=0 
,A operand 
;32-33 
:.A operand 
;34-.B 
:end 

This source code is similar to the subtract source code, except that it substitutes CP inst met ions for S l!B 
instructions. Execute the program at low speed and watch how the Z flag and S flag change for the CPs. 
Also note that the A register doesn't change when the CP is e.xecuted. 

The CP instruction is probably used more frequently than the SUB. Look upon it as virtually identical to 
the SUB ...... it uses the same addressing modes, register-to-registt:r, immediate. register indirect with HL, 
and indexed. 

The P(arity)/O(verflow) Flag 
The parity/ overflow flag, abbreviated P / V, is a dual-purpose flag. For arithmetic instructions like the 
ADD. SUB, and CP, it is used to record an overflow condition. Overflow occurs when the resull of an 
add or subtract is too large to be held in 8 or l 6 bits. Examples are an add of 240 and 20 in 8 bit5. or a 
subtract of -30,000 from+ l 0,000 in l 6 bits. Both results will set. the P / V flag to l ., indicating an overflow 
condition. 
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For an example of the P/V flag operation, delete lines 190 through 270 and enter this code: 

280; PN FLAG OPERATION 
290ANUDR LO 
300 ADD 
310 LO 
320 ADD 
330 LO 
340 LO 
3!50 SCF 
360 CCF 
370 SBC 
380 END 

A,50 
A,!50 
HL,-30000 

HL,HL 

HL,30000 

BC,-2768 

HL.BC 

;50 
;50+50= IO0=V! 
;-30000 
;-60000 
;+30000 
;-2768 
;set carry 
;C=0 
;30000-(-2768)=32768 
;end 

Set the speed to the lowest setting as before, assemble the program, and execute, keeping a sharp eye on 
the P / V flag. 

What did you see? The first ADD added an immediate 50 to the 50 in the A register for a result of 100. 
This is not an overflow condition, and the P / V flag should have been set to a 0, indicating no overflow. 

The next add added -30000 in the H L register to itself. This is an overflow condition and ... If you were 
watching closely, you saw that the P / V flag was not set to indicate overflow for this instruction! Why 
not? 

If you look at the flag settings in Appendix V, you11 see that the P / V flag and other flags are not affected 
by an ADD HL,XX. About the only flag affected is the C flag. Even though there was an overflow 

· condition, the Z-80 does not provide an indication by setting the P / V flag. Another similar add, the 
ADC H L,XX, however, does change the P / V flag. Be aware of which instructions change the flags! 

The SBC instruction subtracts the -2768 in the BC register pair from the 30000 in HL, yielding 32768, an 
overflow condition for 16 bits. In this case the P /Vis set as the instruction is an SBC, a subtract with 
carry, and the flags are affected for the SBC. 

Prior to the SBC, the Carry flag in the Flags register was set to a I by the SCF instruction (Set Carry 
Flag). It was then complemented by the CCF instruction (Complement Carry Flag), changing the I to a 
0. The SCF and CCF are the only instructions that directly affect any flags. There is no "Reset Carry" 
instruction, so the SCF, followed by CCF, has the effect of a "reset carry." The Carry must be reset for the 
SBC to work properly, as the SBC "adds in" a possible carry from a previous subtraction. We11 discuss 
the Carry in this type of operation in greater detail in another lesson. 

We didn't talk about the SBC in the previous lesson because of the interaction of the Carry Flag. If the 
Carry flag is reset (0), then the SBC simply subtracts the BC, DE, HL, or SP register pair from the 
contents of the H L register pair, with the result going to H L. The Z, S, and C flags are affected according 
to the results of the subtract. As in the ADD HL,XX, the operand for the subtract must be in another 
register pair and no other addressing modes are allowed. 

Before we leave the discussion of the P / V flag, what about the second function, the "P" function? The 
P / V flag is used as a "Parity" flag for logical instructions and shifts and rotates, which we1l discuss in 
another lesson. For now, though we1l tell you that the parity function is simply a record of the number of 
I bits in an 8-bit result. If the number of I bits is even after certain instructions, th-en the P / V flag is set 
(I). If the number of I bits is odd after these instructions, then the P / V flag is reset(0). Check Appendix V 
to see which instructions affect the P / V flag for "parity" or "P." 
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The C(arry) Flag 

The Carry flag is used in many different operations in the Z-80. It's original use was to hold the state of 
the carry from the most significant bit of an add or the borrow from the next bit on a subtract, as shown 
in Figure LESS7-2. 

1 0 1 1 0 1 0 1 181 

+ 0 1 1 0 1 1 1 1 ;..!!.!_ 
CFLAG [!]«"""' 0 0 1 0 0 1 0 0 (CARRY TO NEXT BIT) 

0 0 0 0 0 0 0 0 0 

- 0 0 0 0 0 0 0 1 - 1 
CFLAG EJ...--.1 1 1 1 1 1 1 1 (BORROW FROM NEXT BIT) 

Figure LESS7-2. Carry Flag Use 

Another use of the Carry flag is to hold the state (0 or I) of the most significant bit on a "shift" or "rotate" 
operation. We11 look at these applications of the Carry flag in future lessons. 

To Sum It All Up 
To review what we've learned in this Lesson: 

• There are 6 flags in the Flags register; they are grouped together as the F register and form a register 
pair with the A register 

• The Z flag is set after arithmetic and other instructions when the result is zero; it is reset when the 
result is non-zero 

• The S flag is set after arithmetic and other instructions when the result is negative; it is reset when the 
result is positive 

• The Z-80 acts as if two's complement numbers were being processed in setting the S flag, but the 
arithmetic may be "absolute" 

• The Compare instruction CP acts like a Subtract in Flag settings but does not put the result into the A 
register 

• The P / V flag is set to indicate overflow conditions for both 8- and 16-bit operations 

• The P / V flag is also used to record the "odd" or "eveness" of the number of I bits in a result for other 
instructions 

• The Carry flag can be set by an SCF, or "complemented" by a CCF 

• The Carry flag is used to record the carry or borrow from a high-order bit or the state of a bit on a shift 
or rotate 

• The flags are set for some instructions but are not affected by others; the programmer must be aware 
of when they are affected 

For Further Study 
Appendix V: Flag Settings 
SBC HL,XX instruction (Appendix V) 
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Lesson 8 
Loops, Unconditional Jumps, and Conditional Jumps 

Load LESS8 from cassette. 

Up to this point we've really only executed a series of sequential instructions. The power of a 
microprocessor or any computer, however, is being able to do "iterative"types of operations in "loops." 

A loop is simply two or more cycles through the same set of instructions. For an example of a simple 
loop, enter the source code below, or use the existing source code from the Lesson file: 

100; SIMPLE LOOP 

110SIMLOP LD BC,100 ;load BC with 100 
120 LD HL,0 ;clear HL 
130S1M010 ADD HL,BC ;add BC to HL 
140 JP SIM010 ;loop back 
1!50 END ;end 

Assemble the code and check for errors. Now set the speed to a slow setting and execute by 

zx 

As the program executes, you can see that the H L register pair is incremented by I 00 each time through 
the loop. Notice also how the program counter display changes between the location of SI MO 10 and the 
instruction following. Hit BREAK to get back to the Command Mode. 

The JP SIM0IO instruction is an "unconditional" jump instruction. It always jumps back to a specified 
address. 

Look at the three machine-language bytes for the JP SIMO IO instruction. The first is an "opcode" byte 
of C3H. The next two are address bytes for the instruction. 

The address bytes are in standard Z-80 address format, least significant byte followed by most 
significant byte. The value of the two address bytes correspond to the location of the label SIMOIO. 

Symbolic Addressing 
Using a label instead of an absolute address in memory is termed "symbolic addressing." It relieves the 
programmer of having to compute the actual address for the Jump. Of course, you could still "hand 
assemble" machine-language object code, but it's much more convenient to let the assembler do it for 
you. 

We've used labels for other source code in previous lessons, but this is the first time that we 're using them 
for their primary purpose - "tagging" an instruction for a Jump point. 

This assembler and all assemblers build a table of symbols (appropriately enough called a "symbol 
table"). In it are all labels and other symbols encountered in the program. The assembler uses the 
symbols to "build"the addresses in instructions, as, for example, the address of SI MO IO in the program 
above. 

You can use labels for locations anytime you wish. The labels are usually associated with Jump points 
but do not have to be. Labels may be I to 6 characters, the first of which starts with an alphabetic 
character. One convention that I've used here, and that other programmers often use, is to make the 
primary label a 6-character descriptive label and to make following labels the first 3 characters of the 
"module," followed by 3 digits. Often the digits will be in order, as in BASIC lines. You might have 
SQ ROOT as the first label of a square root code segment, for example, and the labels following would be 
SQR0IO, SQR020, SQR080, and SQR090. 
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Unconditional Jumps 
The JP instruction above is one of four "JP" unconditional jumps in the Z-80 (there are other ''JR" 
jumps that we'll talk about in the next lesson). It always has the same format of a C3 H opcode, followed 
by two address bytes, and always transfers control to the jump address. Note that the jump address can 
be anywhere in memory location 0 through 65,535; of course some of these addresses are invalid in the 
TRS-80s. 

There are three ot.her "JP" unconditional jump instructions, and they all use a 16-bit register as a 
"register indirect" pointer. They are 

,JP (HU 

JP OX) 

.IP (IV) 

~jump indirect to HL 
;jump indirect to IX 
;jump indirect to IY 

You can guess how these work. The HL, IX, or l Y holds the Jump address, and the JP simply looks at 
the address from the register and jumps to that location. Here's an example: Delete lines l 00 through l 50 
and enter this program: 

1 60 : INDIRECT JUMPS 

170 SYMBL1 LO 

180 JP 

190 LO 

200 SYMBL2 LO 

210 JP 

220 LO 

230 SYMBL3 LD 

240 JP 

2.50 SYMBL4 LO 

260 END 

HL,SYMBL2 

(HU 

A, 1 

IX,SYMBL3 

(IX) 

A, 1 

IY,SYMBL4 

(IYl 

A, 1 

;load location 
;jump 
;dummy 
;load location 
;jump 
;dummy 
:load location 
;Jump 
;dummy 
;end 

Set the speed to slow and execute the program. You should see the LD A, I instructions bypassed as the 
program jumps first to SYMBL2, then to SYMBL3, and then to SYMBL4. 

By the way, when the assembler assembled this source code, how did it know what value to use in the 
immediate instructions for loading H L, IX, and I Y? The answer is that it went to the symbol table and 
tried to find a "match" for the three symbols. As all three symbols were labels, they were in the symbol 
table, and the assembler found corresponding address values for each of the three. It then filled in these 
address values in the immediate instructions. 

The values we used for immediate instructions up to this point have been numeric values in decimal or 
hexadecimal, but they can be "symbolic" as well, as you can see. As a matter of fact, symbolic references 
such as these are quite common in assembly-language programs, and you will be using them all the time 
as you do more of this type of programming. 

Could you have used numeric values? Sure, but you wouldn't know what the values were until after you 
assembled. You'd have had to make up some dummy values, do a single assembly pass, find out the 
actual locations, and then fill in the proper addresses. With symbolic addressing, the assembler does it 
for you. 

Conditional .Jumps 
The loop in the program above has one drawback. It never stops. We can easily control the loop, 
however, with a "condititional" jump. As an example of a loop with a conditional jump, delete lines 160 
through 260 and enter this code: 
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270: LOOP WITH CONDITIONAL JP 

280 ADDNUM LO 

290 LO 

300 LO 

310 ADD010 LO 

320 ADD 

330 SUB 

340 JP 

350 END 

HL,0 

A,100 

B,O 

C,A 

HL,BC 

NZ,ADD010 

:zero HL 
;counter 
;Oto B 

;A now in BC 
;add !00+99+98 ... 
;A-l to A 
;loop if A not 0 

;end 

Assemble this code without any errors and execute the program. If you execute at moderate speed, you 
will see the loop from ADDOIO through the JP NZ,ADDOIO repeat IOO times. The first time, 100 is 
added to HL (initially set to 0), the next time, 99 is added, the next 98, and so forth, down to 0. 

Let's look at the code in detail. The instruction at line 280 loads the H L register pair with 0. H L will be 
used to hold the running total. 

The next instruction loads the A register with 100. A will be used to hold the current number and will 
start with 100 and "decrement" down to 0. 

The next instruction zeroes the B Register. 

The loop starts at AD DO I 0. Each time through the loop, the following actions occur: 

• The C register is loaded with the contents of A. Since the B register always contains 0, the BC register 
taken as a whole, contains the value of A. 

• The BC register is added to the contents of H L with the result going into H L 

• A SUB A, I is done to subtract I from the count in A. A is initially JOO. After the first SUB, it is 99, 
after the second, it is 98, and so forth. 

• The Zflagin the Flags is set on the result of the SUB I. If the Zflag is reset (NZ)then A is notO; if the Z 
flag is set (Z), then A is 0. 

• The .IP NZ instruction tests the Z flag. If it is not set (NZ), the jump is made just as if the JP was an 
unconditional JP. If the Z flag is set (Z), then the JP "falls through" to the end instruction and 100 
passes through the loop have been made. 

Conditions for JP 
We used an "NZ" for the condition in the JP. This is equivalent to ".lump if Zero Flag Reset:' Logically, 
this is the same as "Jump if Non-Zero:' The mnemonics for a conditional JP may be somewhat 
confusing, so we'll list them here: 

Mnemonic Meaning Flag Setting for JP 

z Jump if Zero Z=I 
NZ Jump if non-Zero Z=O 
C Jump if Carry C=I 
NC Jump if no Carry C=O 
M Jump if Minus S=I 
p Jump if Positive S=O 

Although it might be more convenient to use a JP SZ,XXXX. for "Jump if Sign Zero," you'll have to 
rcmembt~r all oft he above mnemonics they're the ones that this assembler, and most Z-80 assemblers. 
recognize. 
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Here are some examples of the use of these mnemonics in JP instructions: 

SUB 

JP 

JP 
JP 

B 

Z,ZERO 

P,PLUS 

M,MINUS 

In the first of these instructions, B is subtracted from A. 

;A-·B 
:jump if A=B 
~jump if A>B but not 0 
;jump if A<B 

The result is either 0, greater than zero, or negative. The JP Z tests the zero flag. If the Z flag is set (Z 
condition), then a JP is made to location ZERO. 

If the JP P instruction is executed, then A cannot equal 8. A test is made of the S(ign) flag by the 
mnemonic ''P" for positive. If the S flag is reset (P condition), then a JP is made to location PLUS. 

If the JP M instruction is executed, then A cannot equal B or be greater than B. As a matter of fact, the 
result must be negative here, and the S flag must be set ( M ). The JP M, MINUS always results in a JP! 

There is also a conditional JP on the Parity/ Overflow flag. We'll discuss this one in another lesson. Also, 
there are a number of "JR" conditional jumps that we'll cover in the next lesson. 

A Comparison Test Using Modify Memory 
Let's expand the code above into a full-fledged comparison test of two memory locations. Delete lines 
270 through 350 and enter the following source lines, or use the Lesson File. 

360; COMPARISON TEST OF 7900H ANO 7901 H 

370 LO A,(7901 H) 

380 LO B,A 

390 LO A,(7900H) 

400 SUB B 

410 JP NZ,NEXT1 

420 JP STORE 

430 NEXT1 JP M,NEXT2 

440 LD A, 1 

450 JP STORE 

460NEXT2 LD A,OFFH 

470STORE LO (7902H),A 

480 END 

Assemble the program and get an error-free assembly. 

;get second operand 
;now in 8 
;get first operand 
;A-B or (7900H)-(7901 H) 
;go if not 0 
;wind up 
;go if A<B 
;l to A 
:go to store 
;-1 to A 
;store 
;end 

The program compares two operands in the "experiment area" at locations 7900H (operand l) and 
790 I H (operand 2). The result of the comparison is put into location 7902H. The result will be as follows: 

Condition 

(Op l=Op 2) 
(Op l>Op 2) 
(Op l<Op 2) 

Result (7902H) 

0 

- I 

To run the program you must first put the two operands you want to compare into locations 7900H and 
7901 H. Do this by using the ZT and ZM commands as follows: 

ZT 7900 (ENTER) 

ZM 7900=xx NN 

7901 xx MM (ENTER) 

The ZT 7900 "traces" or displays the 7900H area. 
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Entering ZM 7900 will display the contents of that location. After the display, enter the hexadecimal 
value (nn) you want put into location 7900H, followed by a space. ALT will then display "790 I "followed 
by the contents of this location. Enter the hexadecimal value (mm) you want put into location 7901 H, 
followed by an ENTER. 

After you have entered the values check the trace display to see that the data has been changed properly. 

Now execute the program by 

zx 

At the end of execution, you should see the contents of location 7902H changed to reflect the results of 
the comparison. It should be a 0, 1, or -I (equals, greater than, or less than). 

The program works similarly to the earlier version, and we11 leave it up to you to scrutinize it. 

To Sum It All Up 
To review what we've learned in this lesson: 

• Loops are portions of code that are executed more than once in sequence 

• A label used in a source line generally gives the line a "name"that the assembler will reference for jump 
addresses 

• Labels are 1 to 6 characters long and start with an alphabetic character 

• There are four "unconditional" jumps in the Z-80 that always jump to the jump address - JP 
(address), JP (HL), JP (IX), and JP (IY) 

• Labels can also be referenced for loading immediate data where the data is an address, such as a jump 
address 

• "Conditional" jumps jump if the condition is met, but otherwise do nothing 

• Conditional jumps test the state of the Zero flag, the Sign Flag, the Carry Flag, or the P / V Flag 

• Conditional jumps use the following mnemonics: z. NZ, C, NC, M, P 

For Further Study 
Appendix V - check the flag actions for conditional and unconditional jumps 

Use the ZM command to modify other memory locations in the experiment area (7900H) with various 
values. 
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Lesson 9 
Relative Jumps, Conditional and Unconditional 

Load LESS9 from cassette. 

In the last Lesson. we looked at unconditional and conditional "JP" type jumps. This lesson we11 
investigate another type of jump, called the "relative" jump. The mnemonic for this jump is "JR:' for 
"Jump Relative." 

To see the basic difference between the two jumps, enter the source code shown below, or use the existing 
source code from the Lesson File. (This example does not have a "relative jump" yet, but it will 
eventually, so don't be confused by the "JP.") 

100 : RELATIVE JUMPS 

110 REWRS LO HL.(7900H) ;load square 
120 LO A,-1 ;clear square root 
130 LO BC,-1 ;initialize odd integer 
140 REL010 ADD A,1 ;square root+ I 
1 !.50 ADD HL.BC ;square-odd integer 
160 DEC BC ;BC-2 
170 DEC BC ;square-odd integer 
180 JP C,REL010 ;loop if not minus 
190 LO (7902H),A ;store square 
200 END ;end 

Assemble the source code until you get an error-free assembly. 

The program above ties together a lot of the concepts that we have discussed in previous lessons into a 
program that will calculate square roots. As you know by now, the Z-80 doesn't have the capability to 
even. multiply and divide numbers; developing a square root program is therefore not a minor 
accomplishment. 

Let's see how the program works: A square root of a number is a number which when multiplied by itself 
will give the number, in case you're rusty. The square root of 100, for example, is IO, as IO times IO is 100. 
The square root of 169 is 13, as 13 times 13 is 169. The square root of 178 is 13.34. 

One way to find a square root is to take the "square" and start subtracting "odd integers" - I, 3, 5, 7, 9, 
and so forth from it. The number of subtracts that can be made is the square root. Don't ask me how it 
works, but it does! 

Take a square of I 02, for example. I 02-1 is IO 1-3 is 98-5 is 93-7 is 86-9 is 77-11 is 66-13 is 53-15 is 38-17 is 
21-19 is 2-21 is -19. We were able to subtract I, 3, 5, 7, 9, 11, 13, 15, 17, and 19 from 102, a total of IO odd 
integers, so the square root is IO. In this method we don't get the fractional part of the square root, only 
the "integer part." 

To run the program, use the ZT command to trace the 7900H area and the "Modify Memory" ZM 
command of ALT to enter a square into locations 7900H and 7901 H. Don't forget that the two bytes of 
the number must be in Z-80 address format, least significant byte followed by most significant byte. The 
number 1000, for example, would be ESH,. followed by 03H. 

After entering the value and verifying that it is correct, run the program by 

zx 

At the end of the program, you11 see the integer square root in location 7902H. If you used a l0OOas the 
square, for example, you11 see 31 decimal or I FH in location 7902H. 
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Let's review the steps of the program: 

First, H L was loaded with the square from location 7900 H and 790 I H. This was a "direct load" of two 
bytes. 

Next, the A register was loaded with -1. The A register will have I added to it each time through the loop 
of the program. We must start off with - I so that the first add of I results in 0. 

Next, the BC register pair was loaded with - I. The BC register pair holds the "odd integer" of I, 3, 5, and 
so forth. BC will have 2 subtracted from it each time through the loop. The odd integer in BC will be 
added to the square in HL each time through the loop. An add of a negative value is the same as a 
subtract of a positive number, after all. 

The loop starts at REL0IO. You can see the indented comments that indicate the instructions that are 
part of the loop. 

Each time through the loop, these things happen: 

One is added to the A register. This "bumps" the count of the number of odd integers successfully 
subtracted from the square. 

An ADD HL,BC is done. This "subtracts" an odd integer in BC from the square (or from the "residue" 
of the last subtract) in HL. 

Two is subtracted from the odd integer in BC by two "DEC BC"instructions to get the next odd integer. 
(We'll discuss DEC in the next lesson.) We started off with +I, and after the first subtract we have - L 

The Carry flag is set to I (C) if the result of this subtract is 0 or greater. In other words, as long as the 
result in HL is not a negative humber, the C flag will be set. As soon as the result "goes negative," the C 
flag will be reset (NC or 0). Why is the carry set in this fashion? There's no easy answer to this. The Carry 
flag is simply set from the carry bit out of H Las the add is done, and one of the peculiarities of an add is 
that there will be a carry as long as the result is not negative. You don't have to memorize this fact, but 
bear in mind that the Carry flag can be used to test for this condition. 

If the result has not "gone negative," the JP is made back to RE LO l 0 for the next operation. If the result 
has gone negative, A contains the count of odd integers successfully subtracted, and this is put into 
location 7902H. 

Try running this program at slow speed and observing the registers. You'll be able to see what is 
happening in the loop quite easily. Also, you might want to refer to Figure LESS9-I, a "flowchart"ofthe 
program. It represents the program "flow" in schematic form. 
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GET 
SQUARE --TWO BYTES 

FROM 7900H TO HL 

-1-SQRT --IN A 

-1-INTEGER 

SQRT+1 
-SQRT 

INTEGER-2 
-INTEGER 

--IN 
BC 

--BUMP A 

--DECREMENT 
BC 

SQUARE· 
INTEGER --ADD HL,BC 
-SQUARE 

NO 
(C) 

STORE 
SQUARE IN 
7902H 

Figure LESS9-1. Square Root Flowchart 

Using a JR in Place of a JP 
The JP C, RELO 10 instruction used one of the conditional JPs we discussed in the last chapter. Look at 
the JP and note the machine-language code for it. It consists of 3 bytes, an "opcode," followed by two 
address bytes that are the address of label RELOIO. 

We're now going to replace the JP with a JR. We can do this easily with the Editor by the following 
sequence: 

D180 

1180, 1 

00180 

(BREAK) 

(deletes line 180) 
(starts insert mode) 

JR C,REL010 (ENTER) 

After you've gone through the above sequence, you should have the same source code as before, except 
that the "JP" is a "JR." You should have: 
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100 : RELATIVE JUMPS 

110 RELJRS LO HL,(7900H) ;load square 
120 LO A,-1 ;clear square root 
130 LO BC,-1 ;initialize odd integer 
140 REL010 ADD A,1 ;square root+ I 
1SO ADD HL,BC ;square-odd integer 
160 DEC BC ;BC-I 
170 DEC BC ;BC-2 
180 JR C,REL010 ;***REPLACED*** 
190 LO (7902H),A ;store square 
200 END ;end 

When you have made the changes, assemble the source code until you get an error-free assembly. After 
assembly, look at the machine code for the JR. It should be 38 F9 in hexadecimal. Notice anything 
different about the JR codes compared to the JP? 

The JR instruction is 2 bytes long, while the JP is 3 bytes! And that's the reason the JR was added to the 
Z-80 instructipn set - primarily to save memory. The JP was used in the 8080 microprocessor; the Z-80 
kept the original 8080 instruction set and added some niceties, and the JR instructions were one of the 
improvements. As jumps are used all the time, saving one byte in a jump can result in a 5% or more 
savings in memory space for a program. 

Relative Addressing 
Look again at the JR bytes. The first byte is an "opcode" byte that tells the Z-80 that a JR is about to be 
executed. The next byte somehow must specify the address for the jump. But how? 

The JR uses "relative addressing." Relative to what? Relative to the location of the instruction. Here's 
the way the Z-80 finds the address for the jump (see Figure LESS9-2): 

JR C,REL010 THIS INSTRUCTIONS 

.Jj.. 
~ B.. ASSEMBLES TO THIS 

OPCODE ..ij.. ~LACEMENT 

11111001 
1111111111111001 

-0-
1111111111111001 
0111110010001010 

0111110010000011 

F9H 
"SIGN-EXTENDED" F9H 

DISPLACEMENT + 
PROGRAM COUNTER 
(CONTENTS=7C84H) 
RESULT IS JUMP ADDRESS 
(7C83H, 7 BYTES 
"BACK") 

Figure LESS9-2. Relative Addressing 

The second byte of the JR instruction is made into a 16-bit number. This byte is an 8-bit "signed value" 
(negative or positive) with the first bit representing the sign. Our old friend (enemy?) the two's 
complement representation is in force here. 

To make an 8-bit two's complement number into 16 bits, we have to "sign extend" the sign bit. If the sign 
bit is a 0, we put zeroes into the most significant byte. If the sign bit is a I, we put ones into the most 
significant byte. In this case we'd need ones. 
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Relative Jumps, Conditional and Unconditional 9 
This 16-bit number is then added to the contents of the Program Counter register. The Program Counter 
always points to the next instruction to be executed. In the case of the JR, it points to the LD (7902H),A 
instruction. 

Adding the PC and the 16-bit number together gives the location of the jump address, as shown in the 
figure. And all that with just 8 bits for an address! 

Of course, all of this is done internally in the Z-80. You never have to do the arithmetic as we just did. The 
assembler will take care of putting in the proper value in the JR instruction, so that all you have to do is 
use a symbolic label for the JR, as we did. 

Types of JRs 
There are four conditional JRs and one unconditional JR. The four conditional JRs are 

• JRC,XXXX 

• JR NC,XXXX 

• JR Z,XXXX 

• JR NZ,XXXX 

Jump if Carry 
Jump if no Carry 
Jump if Zero 
Jump if not Zero 

The JRs work exactly the same as the JPs we discussed in the last chapter. Note that there are no JRs for 
the Sign Flag or Parity/Overflow Flag as there were JPs. The four JRs above, though, are the most 
commonly used conditional jumps. 

Limitations of JRs 
There is one slight hitch, however, in using JRs. As there is only one byte for the address, the jump 
"range" is limited. You know that in an 8-bit two's complement number we can hold values of -128 
through +127. As the second byte is the "relative" jump address in two's complement form, we can, 
therefore, jump only 128 locations back and 127 locations forward. 

And don't forget that those numbers are referenced to the Program Counter, which points to the 
instruction after the JR. Referenced to the JR, then, we can only jump back 126 bytes or forward 129 
bytes. 

That's no problem, however. If we try to use a JR and jump "out of the range," the Assembler will detect 
the error and give us an error message. We can then change the JR to a JP and everything will be fine. 

Use the JR in place of the JP for an unconditional jump, or for a Carry or Zero conditional jump, 
whenever :you're jumping a short ways away. 

A Special Relative Jump 
Now we'll look at a special form of a "relative" jump. Delete lines 100 through 200, and enter the 
following program, or use the source code from the Lesson File: 

2 1 0 ; DJNZ USE 

220ADDNUM LO HL,7900H ;point to 7900H 
230 LO A,O ;clear total 
240 LO B,10 ;initialize counter 
2!50ADD010 ADD A,<HL> ;add in number 
260 INC HL ;point to next 
270 DEC B ;B-1 to B 
280 JR NZ,ADD010 ;loop if not zero 
290 END ;end 

This program adds the contents of memory locations 7900H through 7909H together in the A register. 
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(The maximum sum will he 255+255+255+ ... +255 or 2550 ··· too large to hold in 8 bits. We'll assume, 
though, that all. numbers are in the range of 0 through 25, which will allow us to hold the result in A.) 

Here's how the program works: 

The HL regi:::ter pair is loaded with a value of 7900H. HL is used to point to the 7900H area. 

The A register will hold the total, and it is cleared. 

l'ht: H register holds the count of the number of times through the loop. It is initially set to 10 and will be 
"counted down" to 0. 

The loop starts at ADD0!O. Each time through, the contents of the next memory location from the 
7900H area are added to the A register contents and the H L register pair pointer is incremented by I to 
point to the next location. 

The next instruction decrements the B register. The Z flag is set to Z if the decrement of B resulted in 
zero, or is reset (NZ) if the decrement of B resulted in non-zero. 

The next conditional JR jumps back to the beginning of the loop if the result is non-zero (NZ). 

A total of 10 passes is made through the loop to add the contents of the IO locations. The count in B 
determines the end of the loop when it reaches 0. 

Assemble and execute the program after putting some small values in locations 7900H through 7909H. 
The result will be in A at the end of the program. 

Now delete lines 210 through 290, and enter this code: 

300 : DJNZ USE 

310ADONU1 

320 

330 

340 AODOt 1 

350 

360 

370 

LO 
LO 
LO 
ADD 

INC 

DJNZ 

END 

HL.7900H 

A,O 

B,10 

A,(HL> 

HL 

ADD011 

;point to 7900H 
;clear total 
:initialize counter 

:add in number 
;point to next 
;loop if not zero 

;end 

Assemble the above program. Look at the DJNZ instruction machine code bytes. Note that it is a 
"relative" type of instruction, just like the JRs. 

The DJNZ replaces the DEC Band JR NZ,ADD0I0 instructions of the previous example with one 
instruction. It does exactly the same thing as the previous two instructions, decrementing the contents of 
the 8 register by I, and then testing the Z flag to jump if non-zero (NZ). 

The DJNZ can be used anytime that a "counter" is being decremented down to zero in the B register for 
loop control. Many loops use less than 255 "iterations," or passes through the loop, and the DJNZ is 
perfect in these cases. The loop will repeat for the count in B; if Bis 0 initially, 256 passes will be made, as 
the jump test is made after the decrement. 

To Sum It All Up 
• Relative jumps are 2 bytes instead of 3 bytes as in JPs, saving memory space 

• Relative jumps use a two's complement one-byte relative address which will give the jump address 
when added to the Program Counter 

• There is one unconditional JR and four conditional JRs that work with C, NC, Z, and NZ 
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Relative Jumps, Conditional and Unconditional 9 
• The range of a JR is limited to 126 locations back or I 29 locations forward from the JR; this is usually 

enough 

• A DJNZcombines a decrement of the B register and a JR NZ instruction for loop control (up to 256 
passes) 

For Further Study 
Use JRs in modifications of the above programs and examine their address bytes - private study 
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Lesson 10 
Other Arithmetic and Logical Operations 

Load LESS 10 from cassette. 

Up to this point we've covered many of the common arithmetic operations that you can do in the Z-80. 
In this lesson we'll try to "fill in the gaps" and cover increment and decrement operations and logical 
operations. 

Increments and Decrements 
We've already used the DEC and INC instructions in several examples. ''DEC" stands for "Decrement;• 
and INC stands for "Increment." An increment adds I to the contents of a register or memory location, 
while a decrement subtracts. I from the contents of a register or memory location. 

Increments and decrements exist because adding I or subtracting I is a very common operation in 
assembly-language code. In the case of using the HL register pair for accessing sequential data, for 
example, it's much easier to do an "INC HL"than to load BC with I and add the BC register to HL as in 

LO 
ADD 

BC,1 

HL,BC 

;prepare to increment 
;increment 

There are really two sets of IN Cs and DECs. The first set works on an 8-bit register or memory location 
and uses the same addressing modes as an ADD or SUB. Here are some possibilities: 

INC A ;increment A 
INC C ;increment C 
DEC E ;decrement E 
INC (HL) ;increment memory 
DEC <IX) ;decrement memory 
INC UY) ;increment memory 

The first three instructions increment the A register, increment the C register, and decrement the E 
register, respectively. The next instruction increments the memory location pointed to by HL. The last 
two instructions are similar, but use either IX or IY as a pointer to a location in memory. 

Notice that the addressing modes are identical to the ADD or SUB for 8-bit registers, except that there is 
no "immediate" mode, for example, "INC A, I." The reason for this, of course, is that the instruction is 
predefined to increment by I and needs no other data. 

Eight-bit increments and decrements affect the Flags about the same way that ADDs and SUBs do. A 
zero result after a decrement sets the Z flag, for example. We said "about the same way" because the 
Carry flag is not affected after an increment or decrement. It remains the same. 

The second set of INCs and DECs operate on 16-bit register pairs. The following instructions are 
included in this set: 

DEC BC INC BC 

DEC DE INC DE 

DEC HL INC HL 

DEC SP INC SP 
DEC IX INC IX 

DEC IY INC IY 

The increments and decrements in this set increase or decrease the given register by I count. The result, 
of course, goes back into the register. None of the IN Cs or DECs affect any Flags! This last point is very 
important because it means that you can't increment or decrement a 16-bit register pair and check for a 0 
result! 
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Increments and decrements of either the 8- or I 6-bit type are really "unsigned" operations. The value 
after the increment or decrement can't be thought of in two's complement terms. 

For example, suppose that we're incrementing the B register. We've started at O and have gone up I, 2, 
3 ... until we 're now at l 27 decimal or O 11111 l l binary. What is the next increment? Adding one 
produces the value 10000000, which in absolute form is 128 but in two's complement form is -128! 
Always think in terms of O through 255 on increments and decrements and you1l be fine. 

When the maximum count for 8 or 16 bits is reached, the next increment "resets" the count to 0. 
11111 l t I. for example, becomes 00000000. Decrementing from O produces the maximum count, which 
then counts down to O again. 00000000 becomes l l l l l l I I and then I I I Ill l0, and so forth. 

Enter the following source code or use the existing code from the Lesson File. This code will let you see 
increment and decrement action on 8 bits and will also let you observe the Flag changes. Execute it after 
an error-free assembly. 

1 00 ; 8-BIT INCREMENTS AND DECREMENTS 

110 START 

120 STA010 

130 

140STA020 

150 

160 

LO 
INC 

JR 

DEC 

JR 

ENO 

A,O 

A 

NZ.STAOtO 

A 

NZ,STA020 

;start at 0 
:bump A 
;loop til 0 
;decrement A 
;loop ti! 0 

;end 

The program is very simple. It increments A from 00000000 through I I l Ill l l and back to 00000000 
again, and then decrements 00000000 to 11 l 11111 and then counts down to 00000000 again. Run it at a 
faster speed (unless you like 512 iterations) and observe the Flag changes. The S flag will echo the sign bit 
in bit 7, while the Z flag will be set only on A=0 (2 times in the program). 

The NEG and CPL Instructions 
The N EGate and Com PLcment instructions are two instructions that operate only on data in the A 
register. No other addressing modes are permitted. 

The CPL instruction takes the contents of the A register and "complements" it by changing all ones to 
zeroes and all zeroes to ones. 

Suppose that the A register contained 

00111111 

After a CPL instruction had been done, the new contents would be: 

11000000 

None of the "conditional" flags we've talked about are affected by a CPL, although the N and H Flags 
are set to a I. 

The NEG instruction takes the contents of the A register and "two's complements" it, changing all ones 
to zeroes and all zeroes to ones and adding one. We've already seen how the two's complement works in 
an earlier lesson. The NEG simply performs the two's complement conversion automatically. The effect 
of this is to "negate" a number, changing a positive number into a negative number and vice versa. 

Suppose that the A register contained: 

oo 1 1 t 1 1 1 . or 
decimal 63 

After a negate, the A register would contain: 

11000001, 
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Other Arithmetic· and Logical Operations } Q 
or decimal -63 (in two's complement). 

The NEG sets the Flags just as in a SUB instruction. If the result was 10000000, for example, the Z flag 
would be reset (NZ) and the S flag would be set (M). 

The CPL and NEG are used infrequently compared to adds, subtracts, decrements, and increments, but 
they come in handy from time to time. 

Logical Operations 
The Z-80 has three instructions that perform logical operations, the OR, AND, and exclusive OR 
(XOR). 

If you've done some BASIC programming, you'll be familiar with the first two logical operations, and 
the XOR is simply a variation. -

All of the instructions use the same registers and addressing modes as a SUB. They all use one operand 
from the A register and a second operand from another cpu register or from memory. The result goes 
back into the A register, and the Flags are affected. 

An OR takes the 8-bit value in A and ORs it with the second operand. An OR operates at a "bit-level" 
-one bit at a time with no bit affecting any other bit. For each bit: 

OORO=O 

0 OR 1=1 

1 OR 0=1 

1 OR 1=1 

A bit in the result is set, then, when either one OR the other bit OR both are set. The result of a typical 
OR might be: 

00111010 

OR 01010111 

01111111 

Only in the case of the most significant bit was the result bit not 0, and that was because both operand 
bits were 0. 

ORs are typically used to set a single bit in the middle of other bits. Suppose you wanted to set bit 5 of the 
C register. (Bit positions are 7, 6, 5, 4, 3, 2, I, and O from left to right.) One way to do it wo'uld be: 

LO 

OR 

LO 

A,C 

20H 
C,A 

;get C register 
;set bit 5 
;restore C 

One important use of OR: OR A SETS THE FLAGS DEPENDENT UPON WHAT IS IN A AND 
CLEARS THE CARRY FLAG. IT CAN BE USED EITHER TO TEST A WITHOUT A COMPARE 
OR TO RESET THE CARRY FLAG OR TO PERFORM BOTH ACTIONS. 

An AND takes the 8-bit value in A and ANDs it with the second operand. An AND also operates at a 
"bit-level" - one bit at a time with no bit affecting any other bit. For each bit: 

OANDO=O 

0 AND 1=0 

1 ANDO=O 

1 AND 1=1 

A bit in the result is set, then, when one bit A ND the other bit are set. The result of a typical AND might 
be: 
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00111010 

ANO O 10101 1 1 

00010010 

The only result bits that were set were those in which both operand hits were ones. 

AN Ds are typically used to "mask" data. Suppose you wanted to find the setting of bits ! and O of the C 
register. One method would be: 

LO 

ANO 

A.C 
3 

;get C register 
;get bits l and 0 

At the end of these two instructions, A would contain OOOOOOXX, where XX are the settings of bits I and 
0 in the C register. The bits in bit positions land 0 "fell" through on the AND, and the other bits were 
"masked out": 

0101 001 0 (C REGISTER) 

AND 00000011 (AND VALUE) 

00000010 {RESULT OF ANDl 

An XOR takes the 8-hit value in A and XO Rs it with the second operand. An XOR again operates at a 
"bit-level" -- one bit at a time with no bit affecting any other bit. For each bit: 

OXOR O=O 

0 XOR 1=1 

1 XOR 0=1 

1 XOR 1=0 

A bit in the result is set, then, when either one OR the other bit but NOT both bits is set. The result of a 
typical XOR might be: 

00111010 

XOR 01010111 

01101101 

Whenever the operand bits are both Os or both ls, the result bit is a zero. 

XORS are used infrequently compared to ORs and ANDs. One classic example of the use ofan XOR is 
to check the sign of a result. Suppose that we were going to multiply two 8-bit numbers. The sign of the 
result could be determined by: 

10101010 (-86 DECIMAL) 

XOR 01010100 !+84 DECIMAL) 

1 1 1 1 1 1 1 0 (XOR FIESUL T) 

The result sign of the XOR is a I, so the sign of the multiply result will be a I, or negative. 

A special case of XOR is XOR A. What does this instruction do? 

XOR A dears the A register to 0 and sets the Z Flag to 0 .. H should be used as an "efficient" clear 0, as it is 
only one byte. 

A Sample Problem Using ANDs and ORs (or ORs or ANDs) 
Suppose that we have 8 bytes in the 8 memory locations of7900H through 7907H. Each byte represents 
data on one employee of the ACME Z-80 Programming School. 

The data has been compressed down into a few codes and "fields" within the byte, as shown in Figure 
LESSJO-l. 
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7 6 5 4 3 2 1 0 

I I I I 

/1 
~ FIELD3: 
O IF MALE O IF MARRIED 
1 IF FEMALE 1 IF UNMARRIED 

FIELD 2: 
00= ~SK/YEAR 
01 = 15K TO 20K/YEAR 
10=OVERPAID 
11 = TERMINATED 

'FIELD 5: 
~GRAMMER 
01 = SECRETARY 
10= INSTRUCTOR 
11=DEADWOOD 

FIELD 4: 
'oO='i'CAC:K 
01=8ROWN 
10=BLONDE 
11=OTHER 

Figure LESS10-1. Fleids 

Bit 7 of each employee byte is a 0 if male, l if female. 

Bits 6 and 5 are the pay range: 
00 is between $10,000 per year and $15,000 per year 
01 is between $15,000 per year and $20,000 per year 
10 is marked .. overpaid" 
l l is terminated 

Bit 4 is a O if married, I if unmarried. 

Bits 3 and 2 are hair color: 
00 is black 
01 is brown 
IO is blonde 
11 is other 

Bits I and O are the occupation code: 
00 is programmer 
0 I is secretary 
IO is instructor 
11 is deadwood 

Here's the problem: Can you write a program to find the number of employees that are overpaid 
deadwood and set the terminate flag? 

Use the techniques you've learned so far in indexing the data via HL indirect addressing. Use an AND to 
get the proper fields. If you've found an employee that is both overpaid and deadwood, set bits 6and 5 to 
"terminate" him or her. Before you start writing, delete lines 100 through 160 and enter the following 
program: 
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1 70 ; SAMPLE DATA FOR ACME PROGRAMMING SCHOOL 

180STOATA LO 

190 LO 
200 LO 
210 STD010 LO 

220 LO 
230 INC 

240 INC 

250 OJNZ 

260 JR 
2700ATA OEFB 

280 DEFB 

290 OEFB 
300 OEFB 
310 DEFB 

320 OEFB 
330 DEFB 
340 OEFB 
350ENOLOC END 

----------·--------~----•~···-·-~---·--

HL,7900H 

DE.DATA 

B,8 

A,<OE) 

(HL),A 

HL 

OE 
ST0010 

ENOLOC 
43H 
17H 

OAH 

56H 
OC3H 
30H 
OOH 
01H 

;point to data buffer 
;point to program data 
;8 employees 

;get byte 
;store 
;increment buf pointer 
;increment data pntr 
;loop if not 8 

;go to end 
;data 

:end 

Assemble and execute the program. It will initialize the data in the 7900H area. Now see if you can write 
a program to terminate that deadwood! 

When you have a program, delete lines l 70 through 350 and enter your program. Edit and assemble it 
until you get an error-free assembly. Be certain to include an END statement at the end. 

Hint: Look at previous programs for instructions. You should be able to find everything you need there. 
At the end of the program, you should set the terminate codes in all applicable employee bytes. Execute 
your program. If you have problems refer to the operating procedures for A LT in the first four lessons 
and Appendix V. Sorry, we can't help you any more than that. You're on your own here! 

Are you done? !fit took a long time, don't despair. The first program is terrible! They'll get much easier 
as you go along. 

The before and after area is shown in Figure LESS l0-2. If you didn't come up with the proper results, 
you may have many disgruntled employees of ACME. Here's one of many versions that will work: 
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1 00 ; TERMINATE PROGRAM 

110TERMPR LO 

120 LO 
130 TER010 LO 

140 AND 

150 CP 
160 JR 

170 LO 

180 AND 

190 CP 

200 JR 

210 LO 

220 OR 

230 LD 

2.40TER020 INC 

2.50 DJNZ 

260 ENO 

-----------·------·---------------~ 

43H 7000H 0 1 0 0 0 

17H 0 0 0 1 0 

OAH 2 0 0 0 0 1 

56H 3 0 1 \l 1 0 

C3H 4 1 1 0 0 0 

30H 5 0 0 1 1 0 

OOH 6 0 0 0 0 0 

01H 7 0 0 0 0 0 

0 

1 

0 

1 

0 

0 

HL,7900H ;point to employee area 
B,8 ;8 employees 
A,(HLl ;get employee data 
3 ;get occupation 
3 ;is it "deadwood"? 
NZ.TER020 ;go if not 
A,(t-lL) ;get data again 
60H ;get salary 
40H ;is it "overpaid"? 
NZ,TER020 ;go if not 
A,(HU ;get data byte 
60H ;set bits 6,5 to 11 
CHL),A ;store modified byte 
HL ;point to next 
TER010 ;go if not 8 

1 

1 

1 

1 

1 

0 

1 

1 

0 

0 

1 

0 

;end 

MALE, OVERPAID, MAR, BLK HR, DEADWOOD 

MALE, 10K-15K, UNM, BRWN HR, DEADWOOD 

MALE. 10K-15K, MAR, BLONDE, INSTR 

MALE, OVERPO, UNM, BROWN HR, INSTR 

FEMALE, OVERPD, MAR, BLK HR, DEADWOOD 

MALE, 15K-20K, UNM, BLK HR, PROG 

0 0 0 MALE, 10K-15K, MAR, BLK HR, PROG 

0 0 1 MALE, 10K-15K, MAR, BLK HR, SECRE 

63H TERMINATEOl 0 1 1 0 0 0 1 1 

17H 2 0 0 0 1 0 1 1 1 

0AH 3 0 0 0 0 1 0 1 0 

56H 4 0 1 0 1 0 1 1 0 

E3H 5 1 1 1 0 0 0 1 1 TERMINATED! 

30H 6 0 0 1 1 0 0 0 0 

OSH 7 0 0 0 0 0 0 0 0 

01H 8 0 0 0 0 0 0 0 1 

Figure LESS10-2. Before and After Results 

To Sum It All Up 
To review what we've learned in this lesson: 

• Increments and decrements add or subtract I from an 8-bit register or memory location, or from a 
16-bit register 

• Flags are set for 8-bit increments and decrements, but not for I 6-bit increments and decrements 

• The CPL "complements" A register data, changing all Os to Is and all ls to Os 

• The NEG takes the two's complement of A register data 
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• A NDs, ORs, and XO Rs work with one operand in A and one from another CPU register or memory 

• ANDs set the result bit to a I only if both operand bits are I 

• ORs set the result bit to a I if either operand bit is a I 

• XORs set the result bit to a I if either but not both operand bits is a I 
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Lesson 11 
Subtracts with Carry and Multiple-Precision 

Load LESS I l from cassette. 

In this Lesson we're going to look at ADC and SBC, adds and subtracts with "Carry."These instructions 
are very similar to the standard ADDs and SU Bs, except that the state of the Carry flag is added in or 
subtracted. ADC and SBC allow "multiple-precision" operations which can extend the range of 
processing to any size number, not just 8 and 16 bits. To understand the ADC and SBC, we first have to 
look at "multiple-precision" numbers. 

Multiple-Precision Numbers 
A multiple-precision number is a fancy term for any integer number format that is larger than the size the 
microprocessor can handle with its built-in instructions. 

In the Z-80, we can add 8 and l 6--bit operands. The maximum number that can be represented in 8 hits is 
255 (unsigned), while the maximum number that can be represented in l 6 bits is 65,535 (unsigned). What 
about large numbers? 

One way to handle large numbers is to use "floating-point" numbers. Floating-point representation is 
what BASIC uses to handle single-precision and doublt:-precision numbers. Floating-point operations 
are rather complex, however, and beyond the scope of these lessons. 

There's no reason we can't handle any size number in the Z-80. We may have to string the numbers 
together as a series of bytes, but we can easily handle 4-byte or 8-byte numbers. 

Look at Figure LESS l l-1. In this figure, we have a 4-byte number. In four we can represent 2 to 
the 32nd power or about 4,295,000,000. That's not an unreasonable number range to work with, even for 
Federal budget deficits. As a matter of fact, we c.1n get more precision than we get in single-precision 
BASIC. Note that I said more precision. which essentially means more digits; we still don't have the 
range of BASlC variables which also allow exponents such as l .234 X l0 to the 14th power ( l.234E+ 14). 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

Figure LESS11-1. Four-Byte Multiple-Precision Number 

lf we want even more of a range, we can go to a larger number of bytes, hut we'll consider 4 bytes here, for 
convenience. 

The format of multiple-precision numbers is about the same as 8·· or l 6-bit numbers. The first bit may or 
may not be a sign bit, depending upon whether you're working with absolute or two's complement 
numbers. The only real difference is that the number is spread out among several bytes, and that adds, 
subtracts, and other operations have to be handled in 8-bit or 16-bit "chunks'.' 

Suppose that we want to add the numbers shown in Figure LESS! 1-2, ·rhe Lwo 4-hyte numbers here 
represent 8,000,00 I and 8·, 777,215. The first add adds the bytes 0 l and FF, hexadecimaL The next add 
adds the next two bytes and any carry from the least significant byte. The next add adds the third bytes of 
the operands and any carry from the second add. Finally, the last add adds the fourth bytes of the 
operands and any carry from the third add. 



11 Subtracts with Carry and Multiple Precision 

ADC ADC ADC ADD 
HERE HERE HERE !!!!!!. 

00000000 01111010 00010010 00000001 8,000,001 
(007A1201H) 

00000000 10000101 11101101 11111111 8,777,215 
(0085EDFFH) 

,r"\C ,f""'\C ,t'"'\C 

00000001 I I 00000000 I I 00000000 I I 00000000 
18,777,218 

(01000000H) 

~ c =CARRY TO NEXT BYTE 

Figure LESS11-2. Adding Multiple-Precision Numbers 

The first add is our old friend ADD, an 8-bit add. The remaining three adds are ADCs, or Adds with 
Carry so that any carry from the low order is added in. 

Eight-Bit Add With Carry 
The 8-bit ADCs operate very similarly to the standard 8-bit add. Another cpu register or memory 
location is added to the contents of the A register, with the result going into the A register. However, in 
addition to the second operand being added to the A register, the current state of the Carry flag is also 
added in. As the Carry flag may be set or reset, the add results in either the same sum as a normal ADD 
or a result that is one greater than the normal ADp. 

Let's look at a program that performs the 4-byte multiple-precision add that we diagrammed above. 
Enter the following source code, or use the existing source lines from the Lesson File. 

100 ; ADC FOR MULTIPLE-PRECISION 4-BYTE ADDS 

110MPADDS LD HL,7903H ;point to op 1+3 bytes 
120 LD IX,7907H ;point to op 2+3 bytes 
130 LD B,4 ;loop counter 
140 OR A ;clear carry 
1!50 MPA010 LD A,(HL> ;get operand l 
160 ADC A,<IX> ;add in operand 2 
170 LD <HL>,A ;store result 
180 DEC HL ;decrement op I pntr 
190 DEC IX ;decrement op2 pntr 
200 DJNZ MPA010 ;loop if not 4 
210 END ;end 

Assemble the source code and get an error-free assembly. Now trace the 7900H area by 

ZT7900 

Modify the 7900H area as follows: The four bytes at 7900H through 7903H hold the first operand. The 
four bytes at 7904H through 7907H hold the second operand. After the add is done, the result will 
replace the first operand at locations 7900H through 7903H. A suggested first set of operands is: 
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Operand l (7900H-7903H) OOH 80H 27H FFH +8,398,847 decimal 
Operand 2 (7904H-7907H) 83H A0H 7AH llH -2,086,634,991 decimal 
Result (7900H-7903H) 84H 20H A2H lOH -2,078,236,144 decimal 



Subtracts with Carry and Multiple Precision 11 
Now execute the program by 

zx 

and look at the results in the operand I area. Try making up several of your own operands. 

The program works like this: H Lis used as a pointer to the first operand area. Since we 'II be adding bytes 
from least significant byte to most significant, H L is set to point to the last byte of the first operand. 

IX is used as a pointer to the second operand area. It is initially set to point to the last byte of the second 
operand. 

The B register is used as a loop counter for the 4 adds that will take place. 

The loop starts at M PAO 10. Each time through the loop. H Land IX point to the next set of bytes in both 
operands. 

The A register is loaded with the first operand byte by the register indirect of H L. The ADC instruction 
then adds the second operand byte. The result in A is then stored back in the first operand area. The 
ADC adds the two bytes, but also adds in any Carry from the previous add. 

Important note: The only instruction affecting the Carry in the loop is the ADC. therefore the Carry 
always holds the Carry from the last ADC. 

The Carry before the first add was set to Oby the OR A instruction, which, as you will recall, sets the 
Carry to 0. The first ADC, then, uses a carry of 0. 

Experiment with different 4-byte operands, and you 'II get a good idea of how this multiple-precision add 
works. 

Sixteen-Bit Add With Carry 
We've already discussed the 16-bit ADD instruction that uses either HL, IX, or IY. There is a 
comparable 16-bit ADC instruction that uses H L only. The format of this ADC is 

ADC HL,BC or ADC HL,DE or ADC HL,HL or ADC HL,SP 

This add, like the ADD, works with the HL register pair and one other register pair, with the result going 
into H L. Like the 8-bit ADC, this A DC adds in any previous Carry. 

Let's see how this A DC works. Delete lines I 00 through 210 and enter the following source code, or use 
the Lesson File: 

220; MULT PREC USING HL AND 4-BYTE OPERANDS 

230 MPAOOH LO BC,(7906H) 

240 LD HL,(7902H) 

250 OR A 

260 AOC HL,BC 

270 LO (7902H),HL 

280 LO BC,(7904Hl 

290 LO HL,(7900H) 

300 AOC HL,BC 

310 LO (7900H),HL 

320 END 

;get op 2 
;get op I 
;clear carry 
;add two bytes 
;store 
;get op 2 
;get op I 
;add two bytes 
;store 
;end 

Get an error-free assembly on this program, trace the 7900H area, and then use the ZM command to 
store some data in the operand area. (Or use the same data as in the previous example.) 
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11 -Subtracts with Carry and Multiple Precision 

The or:icrand area is identical to the operand area in the previous program. There is a problem with this 
add, however. Can you see what it is? 

For the first operands, try tht.:se, and you will see the problem: 

Operand l (7900H--7903H) OOH 80H 27H FFH 
Operand 2 (7904H-7907H) 83H AOH 7AH ! IH 

Execute the program and look at the result. 

We expected to see: 

Result 

but we saw: 

Result 

(7900H-7903H) 84H 20H A2H !OH 

(7900H-7903H) 84H 20H All!(!) !OH 

Why'! Unfortunately, the LD BC and the L D H L assume that the data to be loaded is in "reverse format," 
with the least significant. byte followed by the most significant byte. That's not the way that we ordered 
the data we went in the order most significant, next significant, next significant, and least significant. 

If we want to use the I 6-bit ADC for adding multiple-precision numbers, then, we had better order the 
data as shown in Figure LESS 11-3. Other than that problem, using 16-bit ADCs for multiple-precision 
adds of 4-byte operands works fine. It is much faster than the 8-bitadd method because it adds in 16-bit 
"chunks?' The size of the operands could be extended to any multiple of 2 bytes, or 16 bits. 

2-BYTE 
GROUPINGS 

N-BYTE MULTIPLE-PRECiSIOIII NUMBER 

-----' ---~-------..,, 

LS B'ffE MS BYTE 

EACH 2-BYTE GROUP IS 
ARRANGED IN THE ORDER 
SHOWN HERE 

Figure lESS11-3. Sixteen-Byte Multiple Precision 

Eight-Bit Subtracts With "Borrow" 
The 8-hit subtract, SBC, is identical to the 8-bit ADC, except for the actual operation, of course. Again 
the addressing modes permitted are register-to-register, immediate, register indirect using HL. and 
indexed using either IX or lY. 

In the SBC, any Carry from a lower order is actually a "Borrow;' but the borrow is termed a Carry for 
convenience. 

To see that the subtract does work, delete lines 220 through 320, and enter the program below. It 
duplicates the earlier program, except that the ADC is replaced by an SBC. The operands are 4-byte 
operands in the 7900H through 7907H area as before. 
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Subtracts with Carry and Multiple Precision 11 
330 ; SBC FOR MULTIPLE-PRECISION 4-BYTE SUBTRACTS 

340 MPSUBS LO HL,7903H ;point to operand 1+3 
3!50 LO 
360 LO 
370 OR 

380 MPS010 LO 
390 SBC 

400 LO 

410 DEC 

420 DEC 

430 DJNZ 

440 END 

IX,7907H 

B,4 

A 

A,(HL) 

A,<IX) 

(HL),A 

HL 

IX 

MPS010 

;point to operand 2+ 3 
;loop counter 
;clear carry 

;get operand 
;subtract operand 2 
;store result 
;decrement op I pntr 
;decrement op 2 pntr 
;loop if not 4 

;end 

Assemble the program, trace the 7900H area, and fill in some appropriate operands. Try this one as a 
start: 

Operand l (7900H-7903H) OOH 80H 27H FFH +8,398,847 decimal 
Operand 2 (7904H-7907H) 83H A0H 7AH 11 H (-) -2,086,634,991 decimal 
Result (7900H-7903H) 7CH DFH ADH EEH +2,095,033,838 decimal 

Execute the program and look at the results in the 7900H area. These operands cause a borrow from the 
next higher byte, and you can see how the SBC uses this borrow in the subtract of the current byte. 

We11 leave it up to you to experiment with this multiple-precision subtract with other operands. 

Sixteen-Bit Subtracts with Borrow 
There is a 16-bit subtract with carry that is comparable to the 16-bit ADC. The 16-bit SBC is identical to 
the 16-bit ADC except for the actual operation. It uses HL and either BC, DE, HL, or SP. The second 
register pair is subtracted from the contents of HL, with the result going into HL. The possible 
combinations are: 

SBC HL,BC or SBC HL,DE or SBC HL,HL or SBC HL,SP 

We'll leave it up to you to enter and modify the 16-bit ADC program for multiple~precision subtraction. 
The instructions will be identical, except that an SBC HL,BC would be used in place of the ADC 
HL,BC. 

Other Multiple-Precision Operations 
You've seen in the above discussion how almost any size number can be handled for adds and subtracts 
by using ADC and SBC. But what about multiplies, divides, and other operations? Generally these are 
quite a bit more difficult. We'll be looking at some multiply and divide programs in a later lesson and 
we11 discuss some possibilities for multiple-precision operations in that lesson. 

To Sum It All Up 
To review what we've covered in this lesson: 

• Multiple-precision numbers are numbers that use multiple bytes to provide a larger number range 
than is possible in 8 or 16 bits 

• Multiple-precision numbers can be absolute or signed (two's complement) and resemble 8- or 16-bit 
numbers of these types 

• Eight-bit adds with Carry operate similarly to the normal 8-bit adds, except that the current state of 
the Carry is added in 

• Sixteen-bit adds with Carry use the H L register and another register pair, adding in the current Carry 

73 



11 Subtracts with Carry and Multiple Precision 

• Eight-bit subtracts with Carry operate identically to an 8-bit ADC, except that a "borrow" is 
subtracted from the A register along with the second operand; the borrow is held in the Carry flag 

• Sixteen-bit subtracts with Carry use the same register formats as the 16-bit ADC, using HL as an 
"accumulator" and another register pair as the operand to be subtracted from the HL register, along 
with the current state of the Carry 

For Further Study 
Look at the Flag operations for all 8- and 16-bit subtracts (Appendix V) 
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Lesson 12 
How to Move a Block A way 

Load LESS.I 2 from cassette. 

In previous lessons we talked about how we could set up assembly-language loops by conditional 
branching using the JP or JR instructions. In this lesson we'll see how a loop can be used to move a block 
of data from one part of memory to another. We'll then look at a "built-in"loop in one instruction, using 
the Z-80 "block move" instructions. 

First of all, let's answer the question: Why do we want to move data from one part of memory to 
another? Just to get clear in your mind what happens in this type of operation, look at Figure LESS 12-1. 
This shows a "block move"from one part of RAM to another part of RAM. The block size may be any 
number of bytes, from I byte up to thousands of bytes. 

BYTE 0 

2 

3 

4 

0 
1 

2 

3 

4 

"SOURCE" 
BLOCK 

"DESTINATION" 
BLOCK 

Figure LESS12-1. Block, Move Action 

BLOCK 
MOVE 
ACTION 

Block moves are used all the time in many different types of assembly-language operations. Some uses 
are: 

• Shuffling blocks of data on "sorts" to arrange data in sequence according to some defined field in a 
record. 

• "Scrolling" the screen up or down. (I'll bet you thought this was a hardware function!) 

• Initializing "tables" or lists of data. 

• Moving blocks of text for "inserts;' "swaps;' or deletions for word processing programs, such as 
Scripsit. 

Block Move Number 1 
Let's use some of the techniques we used in the preceding chapters to write a block move loop. Enter lines 
100 through 300 of the following code, and assemble, or use the Lesson File. 
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} 2 How to Move a Block Away 

100 ;NOT BAD FOR A HACKER 

110 MOVBH LD HL,7900H ;start of "source" 
120 LD DE,7910H ;start of "destination" 
130 LD B,16 ;number of bytes 
140 LOOP1 LD A,(HL) ;get source byte 
1150 LD (DE),A ;store in destination 
160 INC HL ;bump source 
170 INC DE ;bump destination 
tao DEC B ;count down to 0 
190 JR NZ.LOOP1 ;continue if not done 
200 END ;end 

Got it? Now assemble the program and check for errors. 

You're now ready to run. But first, trace memory locations 7900H through 791FH by entering 

ZT7900 

After the ZT, you should see the 7900H area displayed in the experiment area. ALT has filled this area 
with an easily recognizable pattern from the Lesson File, as shown in Figure LESS 12-2. 

Now do a 

ZS 15000 

zx 

LOCN 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
7900 1 1 22 33 44 55 66 77 88 99 00 1 1 22 33 44 5!5 66 
7910 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Figure LESS12-2. Experiment Area Data Pattern 

to set the speed to moderate and to execute the program from the start. 

You should see the "source" bytes replace the destination bytes one by one. At the end of the time, the 
entire "destination line" has been filled with the "source line" contents. The source line contents remains 
unchanged. The source block has been copied into the destination area. 

As you execute the program slowly, watch the pointers change in HL and DE, and the byte count 
decrement down to 0 in B. 

Changing the Number of Bytes Moved 
By changing the value loaded into B in line 130, you can change the number of bytes moved. Try 
experimenting with different byte counts in Band data in the 7900H area (use the ZM command to 
modify the 7900H area, and the Delete and Insert commands to change line 130). 

Changing the Source and Destination Pointers 
Do you see how the source and destination areas are defined? The source "pointer" is loaded into the H L 
register pair. The destination pointer is loaded into the DE register pair. Try experimenting with 
different source and destination addresses in HL ~nd DE, but remember to use the "experiment" 
memory in 7900H through 793FH, otherwise the ALT will prompt you that you've gone beyond your 
bounds again! 
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How to Move a Block Away } 2 
How the Program \Vorks 

If you can't figure out what MOVBH does, let's go through it step-by-step. The instruction in line 110 
loads the HL register pair with the "source" address. The instruction in line 120 loads the DE register 
pair with the "destination" address. The next instruction loads the B register with the number of bytes to 
be moved. These three instructions are the "initialization" of the loop following. 

The instructions from line 140 through line 190 are the actual loop. A byte is picked up from the source 
area by a load of A, using HL as a "pointer." This byte is stored into the destination area. using DE as a 
pointer. Both pointers in HL and DE are then incremented by one count, to point to the next byte. The 
decrement then subtracts one from the number of bytes in the B register. 

If the count in B has not been reduced down to O. the JR goes back to location LOOP! to do the 
operation another time. 

Eventually the count in the B register goes down to 0, and the END instruction causes a return to the 
ALT monitor. 

A Better Block Move 
Programmers are always trying to perfect their "code" to make it run better. Can we perfect this code? 
No? All right, let's move on to Lesson 13 ... 

Wait a minute! We can perfect this code. Let me ask you a question first. How many bytes can be moved 
at one time with the MOVBH program? 

If we load l 00 in the B register, we'd move I 00 bytes. Loading 200 in the B register would move 200 bytes. 
Loading 255 in the B register would move 255 bytes. What. if we loaded the 13 register with O? 

If we loaded the B register with 0, the DEC instruction would subtract l from the B register as follows 

00000000 

-00000001 

11111111 

The result would be all ones, or 255! The count of 255 would then cause 255 "iterations"through the loop 
until O was reached. Actually, then. putting O in the B register causes 256 bytes to be transferred. 

The maximum number of bytes we can transfer is therefore 256 bytes. We could use this program several 
times to transfer larger numbers of bytes, but how about a new program that will transfer thousands of 
bytes. Any ideas'? 

If you've scrolled ahead, you know we have one. Delete lines !00 through 200 to see the following code: 
210 ;A BETTER MOVE BLOCK 

220 MOVBB LD HL.7900H 

230 LO DE.79101-1 

240 LO BC,16 

250LOOP2 LO A,(HLJ 

260 LO (OE),A 

270 INC HL 

280 INC OE 

290 DEC BC 

300 LO A,B 

310 OR C 

320 JR NZ,LOOP.2 

330 END 

This program is very much like the first, with a few exceptions. 

:start of "source" 
;start of "destination" 
:number of bytes 

;get source byte 
;store in destination 
;bump source 
;bump destination 
;count down to 0 
;test BC 

;continue if not done 
;end 
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The BC register pair is used to hold the number of bytes to be moved. We can move I through 65,536 
bytes by specifying a count of I through 65,535 in the LO BC instruction (0 is 65,536). 

Also, since the DEC BC does not affect the flags, we have to be somewhat devious to test BC to see if the 
count has been decremented down to 0. The test is made by loading the A register with the contents of the 
8 register, and then ORingin the contents of the C register. The only way the Zcondition will be true is if 
the count has decremented down to 0 (8=0, C=0). 

Assemble and run M OVBB, using the same procedure as in the first program. Of course, here we're only 
moving 16 bytes, but we could move thousands by changing the pointers and number of bytes in BC. 

Put new data in the 7900H AREA. 

As you execute the program slowly, watch the pointers change in HL and DE, and the byte count 
decrement down to 0 in BC. 

Good, Better, Best . . . 
All right, are you ready for the all-time fastest version of move block, one that is only 1 / 3rd the size of 
MOVBB? 

Delete lines 210 through 330, and you11 see it: 

340: MOVE BLOCK BY LDIR 

3!50 MOVBL LD 

360 LO 

370 LD 

380 LOOP3 LDIR 

390 END 

HL,7900H 

DE,7910H 

BC,16 

;start of "source" 
;start of "destination" 
;number of bytes 

;MOVE BLOCK! 
;end 

Run the program after assembling, using the same commands as in the other two programs. Neat eh? 

Did you notice in running this program that the data appeared to be transferred instantaneously? That's 
because the LDIR is a single instruction, and the ALT program pauses between each instruction during 
speed control; the LDIR performed the 16 iterations of the loop all by itself. 

The LDIR replaces the loop of MOVBB with one instruction. It assumes that the HL register pair points 
to the "source" block starting address, that the DE register pair points to the "destination" block starting 
address, and that the BC register pair points to the number of bytes to be moved, as shown in Figure 
LESSl2-3. 
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3 BYTES { 
TO MOVE 

"SOURCE" 
BLOCK 

"DESTINATION" 
BLOCK 

LD Hl, "SOURCE" 

LO OE, "DESTINATION" 

~g,:c,~) 
_/ 

Figure LESS12-3. LDIR Set Up 

Experiment, using different starting addresses and byte counts with the LD1R. It always operates the 
same as the loop in MOVBB. 

How to Get in Trouble with an LDIR 
What could be simpler ••·-·one instruction for a block move. There is a minor problem ... Delete lines 340 
through 390, and you1! see a program that'll show you what the problem is: 

400; MOVE BLOCK BY LDIR 

410 MOVBX LO HL,7900H ;start of "source" 
420 LO OE,7901H :start of "destination" 
430 LO BC,16 :number of bytes 
440 LOOP4 LOIR ;MOVE BLOCK' 
450 ENO ;end 

Assemble and run the program as before. Did you notice anything strange? 

It appears that instead of moving the data in locations 7900H through 790FH to the area one byte 
higher, 790 I H through 7920H, the value in 7900H was repeated throughout the entire destination block! 

This is a problem that occurs when the blocks are overlapping. IJ you'll give it some thought, you11 see 
what happened. The byte at location 7900H was first transferred to location 7901 H. The byte at 7901 H 
was then transferred to location 79021-1, but this byte was the byte from location 7900H! This "chaining" 
operation was repeated for all 16 bytes and resulted in replication of the data from the byte at 7900H. 
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The moral of this story is Be Careful! If the source block is followed by the destination block, and they 
overlap, part of the data will be replicated! Too bad there isn't an instruction that will work in reverse to 
avoid that problem. 

The LDDR 
Turns out there is! The LDDR works very similarly to the LDIR, except in reverse. The HL and DE 
registers point to the end of the blocks to be moved while the BC register contains the number of bytes to 
be moved as before. Delete lines 400 through 450. and you'll see what I mean: 

460 ; MOVE BLOCK BY LDDR 

470 MOVBD 

480 
490 
500LOOP5 

510 

LO 

LO 

LO 
LODR 

END 

HL,790FH 

OE,7910H 

BC,16 

;end of "source'' 
;end of "destination" 
;number of bytes 

;MOVE BLOCK! 
;end 

Assemble and execute the program as before. Note that this time the move was done successfully. The 
data in 7900H through 790FH was moved to 790 I H through 791 OH (7900H was unchanged). Look at 
the HL and DE registers at the end of the move; they point to 78FFH and 7900H, respectively (the 
pointers were adjusted to these locations, but the byte count "ran out" after 16 iterations). The byte 
count in BC was adjusted down to 0. 

To Sum It All Up 
To recap the LDIR and LDDR, then: 

• Use LDIR or LDDR in place of a loop of other instructions anytime you want to move data 

• Always set HL to the source start and DE to the destination start for LDI R or to the source end and 
destination end for LDDR 

• The BC register always contains the number of bytes to be moved 

• If an LDIR is used, the data will be transferred from beginning to end; if an LDDR is used, the data 
will be transferred from end to beginning 

• If the blocks are overlapping, use LDIR when the source block starts higher in memory than the 
destination block or LDDR when the source block starts lower in memory than the destination block 

For Further Study 
LDI, LDD instructions (Appendix V) 
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Lesson 13 
Table Techniques Part I 

Load LESS 13 from cassette. (There are two LESS 13 files. Load in the first and, when necessary, the 
second.) 

"Tables" are one of the most important data structures in assembly-language programming. A table is a 
list of data, arranged in convenient form for "access." Tables can be constructed at "assembly time" or 
can be constructed "dynamically" during program execution. 

A List of Data 
The simplest form of a table is simply a "one-dimensional" list of data, similar to a one-dimensional 
BASIC array. Let's build two versions of a data list, one with numeric data and one with "alphanumeric" 
(text) data. 

A Numeric Table Lookup 
Suppose that we wanted to convert from degrees Centigrade to degrees Farenheit. One way to do it 
would be to use the formula: 

F=(9 / S)*C+ 32 where C is the temperature in degrees Centigrade and F is the temperature in degrees 
Farenheit. We could do a multiply, a divide, and an add. but another alternative would be to use a 
"look-up" table of Farenheit values. This table would appear as in Figure LESS 13- I. 

CENTIGRADE 

0 

2 

3 

4 

5 

6 

7 

8 

95 

96 

97 

98 

99 

100 

HI 

32 

34 

36 

37 

39 

41 

43 

45 

46 

203 

205 

207 

208 

210 

212 

,,~ 
TABLE ENTRIES 
ARE CORRESPONDING 
DEGREES FARENHEIT 

Figure LESS13-1. Centigrade to Farenheit Table 

The table is "accessed" by using the number of Centigrade degrees as an "index" value. The tahle starts 
with 0 degrees Centigrade and ends with 100 degrees Centigrade. To find the Farenhcit degrees for 20 
degrees Centigrade, for example, you'd look up the 21st "entry" in the table, 

How would you construct such a table using assembly language? To st·e the answer, look at the first 
portion of the Lesson File, which gives the first 20 entries of su1.:h a table: 
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1 00 ; LOOKUP TABLE FOR CENTIGRADE TO FARENHEIT CONVERSION 

1 10 ; ONE ENTRY FOR EVERY DEGREE CENTIGRADE 
120CTOF'TB DEFB 32 

130 OEFB 34 

140 DEFB 36 
150 DEFB 37 

160 DEFB 39 
f70 DEFB 41 

180 DEFB 43 

190 DEFB 45 

200 DEFB 46 

210 DEFB 48 

220 OEFB 50 

230 OEFB 52 

240 DEFB 54 
250 DEFB 55 
260 OEFB 57 

270 DEFB 59 
280 DEFB 61 

290 DEFB 63 

300 DEFB 64 

310 OEFB 66 

;0 degrees C 
;I 
·'"> ,~ 
:3 
;4 
;5 
;6 
;7 
:8 
;9 
;lO 
; I I 
; 12 
; 13 
;14 
;15 
; 16 
: 17 
;18 
;19 

Assemble this source code and see what you get. 

Ok'! You should have seen a list of 20 bytes, ranging from 32 (20H) through 66 (42H). 

The DEF'B Pseudo-Op 
The DEFB is an assembler "pseudo-op" that does not generate an instruction, but generates "data" 
instead. Unlike BASIC, though, we have to be careful where we put the data. In BASIC the DATA 
statements are simply "in-line" with other BASIC statements. In assembly language we can put data 
anywhere, but have to make certain that the code jumps around them. 

Hexadecimal values for DEFB that start with an A through F must have a "leading" 0 for the DEFB. 

You can see from the above code that you can use a label on a data area as well as an instruction. This 
allows you to symbolically reference the data, which, in this example, we've called CTO FTB, or "C to F 
Table." 

Each "entry" in this table is one byte long. Given a temperature reading in degrees Centigrade, we can 
easily find the equivalent degrees Farenheit by a "table lookup:' 

To the code above add the following source code, or use the existing source code from the Lesson File: 
320 ; TABLE LOOKUP FOR C TO F CONVERSION 

82 

330 TA.BLOK LO HL,CTOF'TB ;load table start 
340 LO 
350 LO 

360 LO 

370 ADD 

380 LO 

390 LO 

400 END 

A,{7900H) 

C,A 

B,O 

HL,BC 

A,(HLJ 

(7901 H),A 

;get degrees C 
;now in C 
;now in BC 
; H L now points to data 
;get degrees F 
;put into memory 
;end 
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Assemble the source code and get an error-free assembly. 

This program takes a value in degrees Centigrade from memory location 7900H, uses it as an index 
value, and "looks up" the corresponding degrees Farenheit in the CTOFTB. 

HL is used as an indirect pointer, and is loaded with "CTOFTB." This symbol is the same as any other 
symbol used with an instruction. It is the symbolic name of the location, in this case of data. The 
corresponding address of CTOFTB is put into the instruction as immediate data, as you can see. 

The A register is then loaded with the degrees Centigrade value from location 7900H. This value is 
transferred to the C register, and the B register is cleared. At this point, the BC register pair now holds 
OOXXH, where XX is the degrees Centigrade value. This value is the "index value" for the table lookup. 

Next, the index value in BC is added to the start of the table value in HL The result in H L points to the 
location in the table where the Farenheit byte will be found. 

The A register is then loaded with this value, and the value is then stored in location 7901 H. 

Execute the program after first setting "slow mode," tracing the 7900H area, and putting a Centigrade 
value (OOH -- 13H) in location 7900H with the ZM command. You must execute from the hex location 
of "TAB LOK" by doing a ZX MM MM. The result will be in location 790 I H. ( If you use values other 
than OOH -- 13H, you will get a "NO DATA" or other error message.) 

Entries of More Than One Byte 
The table above was one of the simplest tables we could work with. Let's look at a more complicated 
table, one that uses "entries" greater than one byte and also uses several "fields." 

Delete lines 100 through 400 and enter the program below or load the second Less! 3 Lesson File: 

41 0 ; TABLE WITH LARGE ENTRIES 

420 EMPTAB DEFW 0103H 

430 DEFM 'WM BABBAGE 

440 DEFW 1012H 

450 DEFM 'GEORGE BOOLE 

460 DEFW OF02H 

470 DEFM 'BLAISE PASCAL 

480 DEFW 101AH 

490 OEFM 'ALAN TURING 

This table has four entries, but, of course, it could have many more. The table is shown in Figure 
LESS 13-2. 

16 BYTES PER ENTRY 

ENTRY 1 03 01 W M 15 B A B B A G E 15 15 'II 1> 

2 12 10 G E O R G E 1S 8 0 0 L E 'II 1i 

3 020FBLA I SE"6PASCAL1i 

4 1A 10 A L A N 11 T U R I N G 1i 11 1i 

FIELD 
1: SOCIAL 
SEC# 
(2 BYTES 
LONG) 

FIELD 2: 
NAME 

(14 BYTES LONG) 

15 ··· BLANK 

Figure LESS13-2. Table with Multiple-Byte Entries 

83 



} 3 Table Techniques Part I 

Each entry is made up of two "fields." A field is a subdivision of a "record," as we saw in an earlier lesson. 
The second field holds the name of the computer pioneer, and the first field holds his Social Security 
Number (they used shorter numbers in those days, of course). Each field is a "fixed length"; the second 
field is 14 bytes long, and the first field is 2 bytes long. The total length of each entry is 16 bytes. 

This concept of entries in a table with fields within the entry could be expanded to tables with hundreds 
of entries and with many fields. For example, you might have a table of employees (for the ACME Z-80 
Programming School, or other business) that had one field for an employee name, another for an 
employee number, another for marital status, and so on. Each entry in the table might be a hundred 
bytes long or so. 

Why did we make the fields "fixed length" above? In fact, we could have used a "variable length" field, 
which would make the entries variable length also. Fixed-length entries are easier to work with, even 
though they do take up more space. 

The DEFW Pseudo-Op 
This is the first time we've used the DEFW pseudo-op. You'll recall that a pseudo-op is an instruction to 
the assembler that tells it that something other than an instruction mnemonic is coming. 

The DEFW is used to build data.just as the DEFB was used in the previous example. In this case the 
data for the DEFW represents a 16-bit value. Instead of one byte being generated, as in the case of the 
DEFB, two bytes will be produced. Those two bytes will be in "reverse format;' as we've seen for other 
Z-80 data such as immediate data in instructions. 

Hexadecimal values that start with an A through F must have a "leading" 0 for DEFW. 

The DEFM Pseudo-Op 
The DEFM pseudo-op is also new. The DEFM generates ASCII bytes. ASCII, of course, is a special 
code used to represent text data. All assemblers have such a pseudo-op to allow the programmer to 
easily construct messages and other text data. 

The DEFM generates one ASCII byte for each character enclosed within the quotes. Only the first four 
bytes will be shown on the assembly listing. 

To see how DEFM and DEFW work, assemble the source lines above and get an error-free assembly. 
After assembly, first Trace the table constructed by entering 

ZTXXXX 

where XXXX is the location of the table from the assembly listing. You'll see the first part of the table in 
the Memory Trace area. 

To see the ASCII equivalent, use the "T" option (for "Text") for the Memory Trace. Enter 

ZTT xxxx or simply ZTT alone 

and the memory area will be displayed in ASCII format. You should now see the names in field l of the 
table, but the DEFW data in field 2 will appear as periods, as the values are not legitimate ASCII 
characters. 

Switch back and forth between ZT and ZTT and you'll see how both types of data are stored after 
assembly. Use ZT+ and ZT- to "scroll" forward or backwards through the data area. 
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Accessing Multiple-Byte Table Entries 

We can "scan" a table such as the one above just about as easily as we did in the one-byte per entry table 
case. Scanning means going through the table one entry at a time and trying to find a given entry. 

In this case, though, we have to adjust the table pointers by 16 to get to the next entry. 

Suppose that we are looking for the Social Security Number "key" held in memory locations 7900H and 
7901H. We can use the following program to scan the 4-entry EMPTAB table. Assemble to get the 
program below: 

500 : TABLE LOOKUP FOR FINDING SOCIAL SECURITY NUMBER 

510 SSNLOK LO HL,EMPTAB ;load start of table 
520 LO DE,16 ;entry size 
530 LO B.4 ;for 4 entries 
540 SSN010 LO A,(7900H) ;get first byte of # 

550 CP (HL) ;compare 
560 JR NZ,SSN020 ;go if not equal 
570 INC HL ;point to next byte 
580 LO A,(7901 H) ;get 2nd byte of # 
590 SUB {HU ;compare 
600 DEC HL ;adjust fnd or not fnd 
610 JR Z,SSN030 ;go if "found" 
620SSN020 ADD HL,OE ;point to next entry 
630 OJNZ SSN010 ;go again if not 4 
640 LO A,OFFH ;"not found" flag 
650SSN030 LO (7902H},A ;store flag 
660 END ;end 

------~--------------------~---

This is a fairly complicated program, so we'll explain carefully how it works. The flowchart is shown in 
Figure LESS 13-3. 
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ADD (DE) TO ·-POINT TO 
(HL) NEXT 

TABLE 
START OF ENTRY• 
TABLE TO ADDS 16 
HL 

(HL) + 1-• ••POINT (8)-1-·B ·-DEC II 
HL TO NEXT OF ENTRIES 

TABLE 

--ENTRY 
BYTE 

16-·0E 
SIZE 

GET SECOND 
BYTE OF 
NUMBER 
FROM 7901H 

4-·B --# OF 
ENTRIES 

C SUBTRACT SET A TO 
SSN010 TABLE ENTRY --NOW -1 (NOT 

BYTE 1 IN A FOUND) 
GET FIRST 
BYTE OF 
NUMBER 
FROM 7900H 

{HL) -1 -· ••NOW STORE (A) 

HL POINTS IN 7902H 
COMPARE TO ENTRY 
AGAINST START 
TABLE ENTRY 
BYTE 0 

YES 

Figure LESS13-3. SSNLOK Flowchart 

First of all, HL is loaded with the address of the table. HL will point to each entry in the table in turn. 

Next, DE is loaded with 16. DE will be added to HL so that HL will point to the next entry in the table 
for each of 4 times through a loop. 

Next, Bis loaded with 4. Since there are 4 entries, we'll have to go through a loop 4 times to compare each 
entry. 

The loop _starts at SSN0 10. Each time through the loop, the following actions occur: 

• The first byte of the Social Security number is loaded into A from memory location 7900H. 

• This value is compared to the table value pointed to by HL. This would be the first byte of the 
"current" entry. 

• If they are not equal (NZ), a jump is made to SSN020 to adjust the HL pointer to the next entry. 

• HL is then incremented by one to point to the next byte in the table entry. 

• The next byte of the number in location 7901 H is loaded into A. 
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• A subtract of (HL) is done. This subtracts the next byte of the table entry from A, puts the result (zero 

or non-zero) in A, and sets the flags. 

• HL is adjusted back to the start of the table entry by decrementing by one. 

• If the second bytes are equal (Z), the number has been found. In this case a jump is made to SSN030. 

• If the first or second bytes are not equal, the ADD HL,DE adjusts HL by 16 to point to the next table 
entry. A DJNZ then loops back to SSNOIO for the next comparison. If the count in Bis decremented 
down to Oby the DJNZ, the loop is done, A is loaded with -I, and a jump is made to SSN030. 

• SSN030 stores the value in A in location 7902H. This value is O (from the subtract) if the number is 
found, or -I if the number isn't found after 4 compares. 

• An important note: If the number is found, HL points to the table entry for the number. This is the 
most important result of this table "scan." 

Enter a social security number into 7900H and 7901 H to correspond to one of the table entries. Don't 
forget to use "reverse format." Now execute the program at low speed and watch the HL register. 

At the end of the program, A should contain the "found"/"not found" flag and HL should point to the 
table entry if it was found. 

We1l look at more table techniques in the next lesson. 

To Sum It All Up 
To review what we've learned in this lesson: 

• A simple table might be a list of one-byte entries 

• A table can be accessed by using an "index value." The index corresponds to one parameter, and the 
entry corresponding to the index is another related value 

• The DEFB generates a one-byte data value 

• Data can be labeled with symbolic names, just as instructions can be labeled 

• Tables with multiple-byte entries are common 

• Entries in tables may be subdivided into fields 

• Tables may have "fixed-length" or "variable-length" entries 

• The DEFW generates two bytes of data in standard Z-80 16-bit format 

• The DEFM generates a string of ASCII characters 

• "Scanning" a table means that a search of the table is performed; the search is for a specific entry 

For Further Study 
DEFB, DEFW - private study 
DEFW and ASCII codes - private study 
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Lesson 14 
Table Techniques Part II 

Load LESS14 from cassette. 

Let's take another look at the program from Lesson 13. A modified version is shown below as it appears 
in the Lesson File for Lesson 14. Enter the source lines below, or use the Lesson File. Assemble and 
execute just as you did in the previous lesson, putting a "search" value in locations 7900H, 7901 H, and 
looking for a "found"/"not found" flag in location 7902H on completion. 

100 : TABLE LOOKUP FOR FINDING SOCIAL SECURITY NUMBER 

110 SSNLOK LD IX,EMPTAB ;load start of table 
120 LD DE,16 ;entry size 
130 LD B,4 ;for 4 entries 
140SSN010 LD A,C7900H) ;get first byte of # 
150 CP CIX) ;compare 
160 JR NZ,SSN020 ;go if not equal 
170 LD A,(7901 H) ;get 2nd byte of # 
180 SUB nx+u ;compare 
190 JR Z,SSN030 ;go if "found" 
200SSN020 ADD IX,DE ;point to next entry 
210 DJNZ SSN010 ;go again if not 4 
220 LD A,OFFH ;"not found" flag 
230SSN030 LO C7902H),A ;store flag 
240 END ;end 
250EMPTAB DEFW 0103H 

260 DEFM 'WM BABBAGE 

270 DEFW 1012H 

280 DEFM 'GEORGE BOOLE 

290 DEFW OF02H 

300 DEFM 'BLAISE PASCAL 

310 DEFW 101AH 

320 DEFM 'ALAN TURING 

330 END 

Compare this program with the version from Lesson 13 and see if you can find the differences. 

The biggest difference is that the IX register is used in place of the HL register. Where in the previous 
version HL pointed to each byte of the table entry, in this case IX is not adjusted by an INC or DEC. 

Indexed Addressing 
The type of addressing mode we're using here is called "indexed addressing:• We've used the IX and IY 
registers previously in this course, but only as "register pointers" in identical fashion to using HL. In this 
example, IX is used as a "base index register;' pointing to the start of an area. The "+I" in the IX+ 1 is a 
"displacement" value that is added to the IX pointer value to find the actual location pointed to. 

Figure LESSI4-1 shows what we mean. Here IX points to location 7903H. Doing a LO A in indexed 
addressing mode, however, allows us to load A not only with the contents of location 7903H, but with 
any memory byte from 7903H-l28 to 7903H+ 127. 
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7F80H 

7FFOH 

7FFEH 

7FFFH 

IX POINTS--- 8000H 
HERE 

8001H 

8002H 

8003H 

807FH 

1,~ 

~~ 

(IX-128) 

(JX-3) 

(IX -2) 

(IX-1) 

(IX) 

(IX+ 1) 

(1)(+2) 

(IX+3) 

(IX+ 127) 

~::. 

~~ 

256 BYTES CAN 
BE ADDRESSED BY 
INDEXING, 128 BEFORE 
INDEX POINTER, 127 
AFTER, ANO THE 
INDEX POINTER BYTE 
ITSELF 

Figure LESS14-1. Indexed Addressing 

Delete source lines IOO through 330 and enter the following source lines, and we'll show you what we 
mean: 

340 ; INDEXING EXAMPLE 

35O1NDSTR LO IX,79O3H ;point to base 
360 LO A,CIX-3) ;get -3 byte 
370 LO B,UX+3) ;get +3 byte 
380 LO UX+3),A :swap 
390 LD 0X-3),B 

400 LO A,<IX-2) ;get -2 byte 
410 LO B,(IX+2) ;get +2 byte 
420 LO CIX+2),A ;swap 
430 LO <IX-2),B 

440 LO A,(IX• 1 l ;get -I byte 
450 LO B,UX+ 1) ;get+ 1 byte 
460 LO nx+1>,A ;swap 
470 LO CIX-1 ),B 

480 ENO ;end 

This isn't an especially profound program, but it does illustrate how indexing works. Assemble the 
program and execute it while tracing the 7900H area. The data in 7900H through 7902H will be put into 
locations 7906H through 7904H, respectively (reverse order), by indexing the 7900H area. Note that IX 
never changes. It points to the base address of 7903H. 

Now look at the machine-language instructions assembled for the indexed instructions. The first and 
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sometimes second bytes of indexed instructions are the "opcode." The last byte is always a 
"displacement." 

The displacement is a two's complement number in the range of - I 28 through+ 127, very similar to the 
displacement used in the relative jump instructions or the DJNZ instruction. Look at the displacement 
in LD A,(IX-2), for example. The displacement byte here is FEH, which is a binary l Ill l I IO, or a -2 in 
two's complement form. 

The "effective address" for an indexed instruction is found by taking the contents of the index register 
and adding the sign extended displacement to it. The result is the address used in the instruction. 

In the case of this instruction, for example, the effective address would be 

0llllO0I 00000011 (7903H in IX) 
11111111 II II 11 IO (-2 in displ) 

01111001 00000001 (7901 H = EA) 

"EA" stands for "effective address" in this computation. This effective address of 7901 H would be used 
in the LD A, so in effect: 

LO A,CIX-2) = LO A,(79O1 H) 

in this case. 

If you look at the other indexed type instructions, you can see that they also have displacement bytes that 
duplicate the value in the source line. 

Of course, we're only showing how the effective address is computed here. You don't have to worry 
about the actual computation; the assembler will automatically take care of it for you. All you have to do 
is to establish the IX or IY register at some base value and then use the proper displacement in 
parentheses, such as (IX+23), (lX-67), (IY+23), or (IY-12). 

Table Operations Using Indexing 
Indexing is especially useful in working with tables. Suppose that we have a table that contains entries 
for a simple inventory system for a computer manufacturer. The table and entries are shown in Figure 
LESSI4-2. 

ENTRY 0 

2 

"MASTER" TABLE - MASTER DATA ON INVENTORY 

20 BYTES/ENTRY . 
123 R A M f> M E M 0 R I E s fi 1':, t, 1) 23 

223 R E A D 1;l 0 N L y 1;l 0 I s K S 15 100 

501 C 0 0 I N G 11 s H E E T s "ti 1) 1) U4 

~p AR T# )II 
NUMBER 
ON HAND 

"TRANS" TABLE - DAILY TRANSACTIONS 

ENTRY O 123 S 

123 7 

2 10 

3 00 
13 BYTES/ 

ENTRY , \ 
PART 

# 

NUMBER 
RECEIVED 

Figure LESS14~2. Inventory Table Example 

24 

201 

10!l 

' NUMBER 
ORDERED 
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Each entry in the "master" table is made up of four fields. 

Field number l is the part number, from 0000 through 9999, in 2 bytes. 

Field number 2 is the description of the part. This is a fixed-length field of 16 characters. 

Field number 3 is the number "on harnJ;' the 1n.m1ber actually at the manufacturer, in one byte. 

Field number 4 is the nmnber on order, the number of parts that haven't yet come in, in one byte. 

Each entry in the table is therefore 20 bytes long. 

Each entry in the "transaction" table, a second table, is made up of two fields, a part number (two bytes) 
and the number received. in l byte. Each entry is therefore 3 hytes long. 

We want to write a program that will adjust both the number on order and !he number on hand in the 
"master table" to reflect the number of parts received from the "transaction" table. One way to 
implement it is shown he!ow. Delete lines 340 through 480 and enter the code below, or use the Lesson 
File. 

490 ; INVENTORY PROGRAM USING INDEXING 

500; UPDATES MASTER TABLE WITH DATA FROM TRANSACTION TABLE 

5101NVSTR LO IY,TRANS ;address of transaction 
520 LD B,4 :,number of transactions 
5301NVOIO LD IX.MASTER ;address of master 
5401NV020 LD L,!IY} ;get part# 
550 LD H,UY+ 1 i 

560 LD E,(!Xl ;get table part # 

570 LD D,<IX+ 1 > 
580 OR A ;clear carry 
590 SBC HL,DE ;test for part # 
600 JR NZ,INV030 ;go if not equal 
610 LD A,UY+2} ;get "# received" 
620 ADD A,UX+18) ;add on hand. recvd 
630 LD nx+1 s>.A :store new on hand 
640 LD A.{IX+19} ;get # ordered 
650 SUB (lY+2) :# ordered - # recvd 
660 LD CIX+19},A ;store 
670 JR INV040 ;go for next part 
6801NV030 LO DE,20 ;for master table 
690 ADD IX.DE :point to next 
700 JR INV020 :,get next from master 
7101NV040 LO DE,3 :for trans table 
720 ADD IY,DE ;point to next 
730 DJNZ !NV010 ;go if not done 
740 ENDLOC JR ENDLOC ;done 
750 MASTER OEFW 123 ;part number 123 
760 OEFM 'RAM MEMORIES 

770 DEFB 23 

780 DEFB 34 

790 DEFW 223 ;part number 223 
800 DEFM 'READ ONLY DISKS ' 

810 DEFB 100 

820 DEFB 201 

830 DEFW 501 ;part number 501 
840 DEFM 'CODING SHEETS 

850 DEFB 134 
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860 DEFB 100 
870TRAN5 DEFW 123 ;part number 123 
880 DEFB 5 ;5 received 
890 DEFW 123 ;part number 123 
900 DEFB 7 ;7 received 
910 DEFW 501 ;part number 501 
920 DEFB 10 ; IO received 
930 DEFW 223 ;part number 223 
940 DEFB 100 ; 100 received 
950 END ;end 

The two tables are established in the program itself, one called MASTER and the other TRANS. 

This program will call for everything you've learned thus far, but don't flinch! We'll follow it step by step, 
and you can run it in slow speed and observe the results. 

A flowchart for the program is shown in Figure LESS 14-3. 

TRANS 
ADDRESS --POINT TO 
TO IV TRANS TABLE 
4-·•COUNT 

INV010 

MASTER 
ADDRESS TO --POINT TO 
IV MASTER 

GET NEXT 
TRANS 
PART# 

ADD# RECV'D 
FROM TRANS 
TO MASTER 
ON HAND 

SUBTRACT# 
RECEIVED 
FROM MASTER 
# ON ORDER 

TABLE 

NO 

INV030 

POINT TO 
NEXT MASTER --MUST 
ENTRY BE FOUND 

INV040 

NO 

POINT TO 
NEXT TRANS 
ENTRY COUNT 
-1 ·COUNT 

--COUNT O? 

Figure LESS14-3. INVSTR Flowchart 
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IX is used in the program to point to the MASTER ta hie. I Y is used to point to the TRANS table. IY is 
used to go down the TRANS table one entry at a time. Each time one entry is obtained from TRANS, 
the MASTER table is "scanned" for the matching part number. We're assuming the part number will 
always be found, by the way. If it is not, what will happen? 

When the part number is found, the number received from the TRANS table is added to the number on 
hand, and the updated number on hand is put back into the MASTER table. The number received is 
then subtracted from the number on order and the result is put back into the number on order. 

All through the program, lY points to TRANS and IX points to the master entries. 

Here's a detailed description: 

IY is first loaded with the address of TRANS. Next, Bis loaded with 4. There are 4 entries in TRANS, so 
wc11 have to make 4 updates to the MASTER table. 

The "outer loop" starts at INV0IO. The outer loop is done 4 times, once for each entry in TRANS. The 
outer loop contains an "inner loop" which searches the MASTER table for the part number. 

At INV0 10, the address of MASTER is loaded into IX. In other words, we're starting again,from the 
"top" of the MASTER table to look for the part number. 

Next, the part numberof the current TRANS entry is loaded into H L. Notice the method in which HL is 
loaded, by using IY indexing to load the next 2 bytes from TRANS. 

The inner loop starts at INV020. At this point IY points to the current TRANS entry and IX points to 
the first entry in MASTER. 

DE is loaded with the part number from the MASTER table. This part number is subtracted from the 
TRANS part number in H L. If they are not equal (NZ), INV030 is executed to add 20 to the IX register. 
This points to the next entry in MASTER. 

If the part numbers are equal, the number received is added to the number on hand, and the number 
received is subtracted from the number ordered. The results are stored back in MASTER. The outer 
loop code at INV040 is then executed. This code increments the IY (TRANS) pointer by 3 so that it 
points to the next TRANS entry. DJNZ then decrements Band jumps back to INY0I0 for the next 
TRANS part number. 

When all 4 TRANS part numbers have been processed, the program stops. 

Assemble and run the program. Follow the program by slow tracing, and you'll see the process. Use ZT 
to find the results in the MASTER table (get the locations of the "on hand"and "number ordered" from 
the assembly listing). 

Note: 
In this and other lessons you'll see an end instruction that "jumps to itself." Press BREAK to stop 
execution. 

If you can follow the code in this program, you're doing very well. We have covered a great deal of 
ground in the past lessons and this program incorporates most of the concepts we've discussed in the past 
lessons. A great deal of Z-80 assembly-language "code" is no more difficult than the program above. 

To Sum It All Up 
To recap what we've learned here: 

• IX and IY can be used as "register indirect" pointers, but may also be used as "index registers" 

• When used as index registers, IX and I Y use an 8-bit displacement value 
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• The displacement value, when added to the contents of the index register, forms an "effective address" 

that points to the operand for the indexed instruction 

• Data can be referenced up to 128 bytes back or 127 bytes forward from the index "base" 

• Indexing can be used to advantage in table and other operations 

For Further Study 
Instructions using IX or IY indexing (Appendix V) 
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Lesson 15 
Table Techniques Part III 

Load LESS15 from cassette. 

In the previous lessons, we've covered most of the programming techniques that we can use to access 
data in tables; using the indexing addressing mode plays an important part. 

The tables before this lesson were "scanned" one entry at a time to find data; we didn't know exactly 
where in the table we'd find the "search key;' and had to methodically go through all the entries until we 
found the one we were looking for. These types of tables are called "unordered," because the entries don't 
have any logical order. 

In this lesson we'll look at tables with an "order." 

Types of Orders 
In ordered tables, the order may be alphabetic order, like a phone book, numerical order, historical 
order, or other scheme. Also, the order may be "ascending;• like the phone book, or "descending?' 
Descending would be a phone book printed from Z to A. 

The most common order in assembly-language tables is alphabetic order, as in other types of program­
ming. Usually the sequence is "ascending," from A to Z. 

Actually, the "alphabetic" order really includes all ASCII characters, so it's really "alphanumeric" and 
special characters. Look at Appendix VII to see the ASCII codes for alphabetic, numeric, and special 
characters. The order we'll be using here will be based on these codes. 

An example of data sorted on these codes is shown in Figure LESS 15-1. Note that as you would expect, 
A through Zand O through 9 are kept in order, but that "upper" case comes before "lower case," that 
blanks come before anything else, and that special characters are somewhat scattered around. 

A A R 

A A R 

A A R 

A A R 

A 8 L 

A B L 

A B L 

A B L 

A B L 

A B L 

A B L 

A B L 

D V A R K 11 8 I 

D V A R K A N 

D V A R K a n 

D V A R K - a n 

E J A M E s 11 

E I J A M E S 11 

E J A M E s "f> 

E C H A R L I 

E C h A R L I 

E J 0 H N 11 11 

E J 0 H N 11 C 

E J 0 H N 1i C 

L L 

T H 

I h 

t h 

11 11 

1> 11 

"b "b 

E 1J 

E 1J 

t> t, 

t, 

A R 

11 1S 1S 

0 N y 

0 n y 

0 n y 

11 t, 11 

1S 15 11 
f) 11 ti 

ti 11 11 

11 15 1i 

11 1'i 11 

11 1i f) 

T E R 

(lower case last) 

(- alter comma) 

(! alter blank) 

(comma after !) 

(h after H) 

(period before C) 

f>ccBLANK 

Figure LESS15-1. A Sorted List 

Sorting 
How do tables get in order? Suppose that we're entering a list of names as we think of them. How do we 
order them? This process is called "sorting" and it means that we're ordering the data according to some 
scheme, usually alphanumeric. 

Because sorting long tables or lists of data involves a great deal of processing and sorting is such a 
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common technique, there are many different sort schemes the buhble sort, the two-buffer sort, the 
Shell and Shell-Metzner sorts, and others. You might want to look at some of these other schemes in 
detail. You can find the "algorithms" in computing magazines. 

One of the most common sorts used in assembly language is the "bubble sort." The bubble sort operates 
as shown in Figure LESS 15-2. 

ORIGINAL. l'lflST PASS SECOND PASS THIRD PASS 

5 s 5 5 ~j 2 !~ 16 1!~ 2 2 ~~ 2 1 1 5 SORTED! 1!~ 1 1 1:~ 8 11 11 
6 a a 16 16 16 

~ INDICATES SWAP 
/l TOOK PLACE 

Figure LESS15-2. Bubble Sort Operation 

A table of entries is originally "unordered."" 

The sort starts with the first two entries and compares them. If the second entry is of lower ''order" than 
the first, the two entries are "swapped." If the second entry is equal to or greater than the first, no swap is 
made. 

The second and third entries are now compared, and a swap is made or the entries are left unchanged. 
This process continues until the last two entries in the table are compared. 

At the end of the first pass, the table entries are usually not ordered. Other passes that repeat the 
compare and swap process have to be made. The swapping continues until the entries are in alphanu­
meric order. 

As the "lighter" entries "bubble" to the top, this sort is called a bubble sort. 

We've programmed a bubble sort below. Use the Lesson File, or enter the source yourself: 

100 : BUBBLE SORT 

110BUBSRT LO 
120 BU7910 LO 
130 LO 
140 LO 
150 BU7920 LO 
160 CP 
170 JR 

180 JR 

190 LO 
200 LD 

210 LO 

220 LO 
230BU7930 INC 

240 DJNZ 

250 INC 

260 LO 
270 OR 
280 JR 

290 END 

------------------------------

98 

E,O 

IX,7900H 

B,31 

C,O 

A,(IX) 

CIX+O 

Z,BU7930 

C,BU7930 

o.ux+ 1 > 
UX),D 

UX+1 ),A 

C,1 

IX 

BU7920 

E 

A,C 

A 

NZ,BU7910 

;set pass # to 0 
;point to table 
;32 locations 
;set change flag to 0 

;get first entry 
;test next 
;go if A=B 
;go if A<B 
;get second entry 
;swap B to A 
;swap A to B 
;set "change" 
;pnt to next pair 
;go if not one pass 

;increment pass # 
;get change flag 
;test for change 
;go if change occurred 

;end 
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Assemble the source code above until you get an error free listing. 

The program works with the "experiment area" in 7900H through 791 FH. It assumes that this area is a 
table of data; each entry in the table is a one-byte entry, so there are a total of 32 bytes in the table. 

The bubble sort sorts the 32 bytes, putting the "lower" order bytes at the beginning. 

The experiment area has been filled with "unsorted" characters from the load of the Lesson file. To see 
how it works, set a fast speed by 

ZS 9999 

trace the 7900H area in ASCII by 

ZTT7900 

and execute the program, keeping your eye on the trace are.a. 

Notice how the data has been ordered in alphanumeric order. The bubble sort is inherently slow, but is 
fun to watch. 

Try the program again at a lower speed by using a slow setting of ZS and filling the 7900H area with any 
data you'd like. Execute the program again and keep one eye on the E register, which holds the pass 
number, one eye on IX, which points to the table address, and Whoops!, .. both on the trace area to see 
the data moving. 

Try different data patterns. You may try the ZTT mode for ASCII if you'd like, but this will be most 
valuable when the bytes are valid ASCll characters (otherwise you'll get a period for the character). 

Let's look at the program. 

There are really two loops here, an outer and inner. 

The inner loop goes from BlJ7920 through the DJNZ BU7920 and is used to ''scan" down through the 
table from beginning to end. At Bl.J7920, IX points to the start of the table at 7900H. The B register 
holds 3 I and is used to count the number of comparisons. There are 31 pairs in the table 
0, l / 1,2/ 2,3 / ... 29 ,30 / 30,31, one less than the size of the ta hie. The C register is set to Oat the beginning 
of each new inner loop pass. If any swap occurs, then it is set to l. At the end of the pass, if C is still set to 
0, no swap has occurred and the table is sorted. 

The outer loop starts at BU79 IO and goes to the end of the program. This loop initializes IX, B, and C for 
each new pass at the beginning of the pass. At the end of the pass,it increments the pass number in E and 
then tests the change flag in C. If a change occurred, the table is still not sorted, and another pass is made 
by looping back to BU7910. 

About the only "tricky" part of the program that hasn't been covered up to this point is the CP 
instruction action. We've talked about using CP, but haven't really considered all the details in regard to 
the C flag. 

Using the Carry Flag for Comparisons 
The CP can be used to compare two bytes in unsigned fashion as follows: A compare compares A with 
another operand, call it B, by subtracting B from A: A-R 

If A is less than B. the Carry flag will be set (C). If A is equal to or greater than B, the Carry flag will be 
reset (NC). fn this case, a JR was made if the C flag was set or A was less than B, meaning that no swap 
had to be made. This condition always applies for a CP, or for a SUB, regardless of whether it is an 8-bit 
CP or SUB, or a 16-,bit SBC. 

You can see how this works by using a few more of the features of the A LT program. Use the ZM (modify 
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memory) feature to change memory locations 7900H and 7901 H. Location 7900H will contain the "A" 
operand, and location 7901 H will contain the B operand. A typical example: 

ZM 7900=45 33 

7901=78 34 
7902=67 ENTER 

(change location 7900H from 45 to 33) 
(change location 790 J H from 78 to 34) 
(stop change) 

If you are tracing the 7900H area, you should see the memory locations change to the data you entered. 

Now use the .ZR feature to modify the IX register to point to location 7900H: 

ZRIX=7900 

Now use the Breakpoint feature to "breakpoint" the JR C,BlJ7930 instruction: 

zexxxx (set the breakpoint at the location of the JR C,BU7930) 

The Breakpoint sets up a point at which control will be returned back to the ALT command mode. The 
instruction breakpointed will not be executed. In this case, the LD A,(IX) at BU7920 and the CP (IX+ I) 
will be executed, comparing the A operand with the B operand. 

Now execute the two instructions by 

zx xxxx (XXXX is the location of BU7920) 

The breakpoint will be reached, and the results will be displayed on the screen. Look at the state of the 
Carry flag after the breakpoint is reached. Try various numbers in 7900H and 7901 H to test the CP 
comparison. The carry should be set if A is less than B or reset if A is equal to or greater than B. 

Now here's a short quiz for you: How would you compare the A and B registers and 

• Jump if A was greater than B? 
• Jump if A was less than or equal to B'! 
• Jump if B was greater than A? 

We'll give you a second to think of the instructions .... 

Got them? Here are the answers: 

To jump if A was greater than B, do something like: 

CP B ;compare A to B 
JR C,NEXT ;go if A<B 
JR Z,NEXT ;go if A=B 
JR OUT ;go if A>B 

NEXT ;A=B or A<B 

In this case, if there was no carry, A was equal to or less than B, and we had to test the "equal to" 
condition first. 

To jump if A was less than or equal to B: 

NEXT 

CF' 

JR 
JR 

B 

C,OUT 

Z,OUT 

;compare A to B 
;go if A<B 
;go if A=B 
;A>B here 

To jump if B was greater than A: This is really the same as A is less than B, which is our original 
instruction: 

100 

CP 
JR 

B 

C,OUT 

;compare A to B 
;go if A<B 
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A Bubble Sort of A Two-Byte Entry Table 

One of the best ways to learn anything is by doing, so we'll continue in this vein with the following 
problem: Suppose you had a table made up of two-byte entries at locations 7900H through 791 FH, as 
shown in Figure LESS 15-3. 

ENTRY 1 .... 

2 --
3 ..... 

4 --
s --

6 ... 

7 -

8 --

LS BYTE 

MS BYTE 

LS BYTE 

MS BYTE 

--
--
--
--
--
--

--
-

7900H 

2 

3 

4 

s 
6 

7 

8 

9 

A 

B 

C 

D 

E 

791FH 

Figure LESS15-3. Two Buffer Sort Example 

Each two-byte entry would be in standard Z-80 16-bit format of least significant byte followed by most 
significant byte. 

How would you write a bubble sort to work with these two-byte entries? 

Take some time now and try to come up with a program to do this, based on the earlier program. Hints: 
You'll want to use the HL register as the "accumulator" and load another register pair for the second 
operand. You could use either IX or IY to point to the table entries, incrementing the index register by 
two after each comparision. You'd also need to hold a "change" flag in another register and probably a 
loop counter in another that holds one less than the number of pairs in the table. 

Another hint: The SBC H L,XX will set the carry flag in the same way as the CP. 

Write the program, edit it, and assemble, and then run it with sample data. You can always reload if the 
program "blows up;' but it shouldn't. 

Here's the answer: There are many ways to do this, so if your program is different than this one, don't let 
it bother you. It may actually be better, in terms of speed or memory storage. The one we've come up 
with is here: 

IOI 
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300 ; BUBBLE SORT FOR TWO-SVTE TABLE 

31OBUBSRT LO IX,7900H ;point to table 320 
320 LO s. 115 ;15 pairs 
330 LO A,O ;set change flag to 0 
340 BU7911 LO L,CIX) ;get first entry 
3!50 LO H,UX+1) 

360 LO E,<IX+2) ;get second entry 
370 LO O,UX+3) 

380 OR A ;reset carry 
390 SBC HL,OE ;compare 
400 JR Z,BU7921 ;go if A=B 
4fO JR C,BU7921 ;go if A<B 
420 ADO HL,OE ;restore HL 
430 LO (IX),E ;store B to A 
440 LO ux+o.o 
4!50 LO 0X+2),L ;store A to B 
460 LO UX+3),H 

470 LO A, 1 ;set "change" 
480 BU7921 INC IX ;pnt to next pair 
490 INC IX 

!500 OJNZ BU7911 ;go if not one pass 
1510 OR A ;test for change 
1520 JR NZ,BUBSRT ;go if change occurred 
!530 END ;end 

\ 

We'll leave it up to you to enter this program and execute it with data in the 7900H area, after deleting 
lines 100 through 290. If you have trouble understanding how this program works, go back to the last 
lesson on indexing. 

To Sum It All Up 
To review what we've learned in this lesson: 

• Tables may be ordered in alphanumeric or other order 

• The order may be "ascending" or "descending" 

• Many tables are in alphanumeric and ascending order 

• Various types of sorts are used to put tables in order 

• The bubble sort works by comparing pairs of entries in a table and swapping if the first is of higher 
value than the second 

• The Carry flag can be used to compare two 8-bit or two 16-bit values in CPs, SUBs, or SBCs 

• The Carry flag is set ( C) if the first is less than the second and reset (NC) if the first is equal to or greater 
than the second 

• Breakpointed instructions will turn control back to the ALT command mode and can be used to 
selectively execute instructions 

For Further Study 
Carry flag setting for CP, SUB, SBC (Appendix V) 
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Load LESS16 from cassette. 

Lesson 16 
Block Compares 

In a previous lesson we looked at several "block move" instructions, the LO IR and LD DR. In this lesson 
we'll look at some related instructions, the "block compare" instructions. 

The block compares are CPIR and CPDR, along with two similar block compares, the CPI and CPD. 
Basically, all four are instructions that will rapidly scan a list of bytes, looking for a single given value, 
similar to some of the table techniques that we've been discussing in the previous lessons. 

To get a fast idea of how the block compares work (but without the use of block compare instructions), 
use the existing code from the Lesson File: 

100 ; BLOCK COMPARE 

110COMPAR LO HL,7900H ;start of data 
120 LO BC,32 ;size of block 
130COM010 LO A,23 ;search value 
140 CP (HU ;test for value 
1!50 INC HL ;bump pointer 
160 DEC BC ;decrement count 
170 JR Z,COM020 ;go if found 
180 LO A,B ;test done 
190 AND C 

200 CP OFFH ;0FFH if BC=FFFFH 
210 JR NZ.COM010 ;go if more in block 
220 OR A ;set NZ 
230COM020 END ;end 

The Lesson File puts sample data into the 7900H area. This program searches the 32 bytes from 7900H 
through 79 l FH for the value in A. 

Assemble and execute the program. 

At the end of the program, the HL register should point to one more than the value at 7914H. The Z flag 
should be set to Z (I). The BC register should contain 0OOBH. 

By now you should be able to follow programs such as this with a little bit of head scratching. In the 
program above, HL points to the 7900H area and is incremented by one each time through the loop. BC 
contains the number of bytes in the block to be searched. A contains the search "key;• the value to be 
found. 

Each time through the loop, the contents of A are compared with the value from the 7900H area. Before 
the jump that tests the results of the compare, HL is incremented to point to the next byte in the table and 
BC is decremented. If the two values match, the Z flag will be set and a jump is made to COM020. 

If the two values do not match, the contents of BC are checked. If they contain FFFFH, the count has 
been decremented down past zero. The test is made by AN Ding the Band C registers and comparing the 
result to 0FFH. Only when both equal 0FFH will the result be 0FFH. If BC=FFFFH, then the entire 
block has been searched and the key in A has not been found. 

One way or another, the END statement is reached. If the end is reached with the Z flag set (Z), HL 
points to the found byte + l. If the Z flag is reset (NZ), the key has not been found. 

Run the program above several times using different values in the A register by changing the immediate 
load of LD A,23 and reassembling. Note the cases where the search key is found and the contents of the 
HL pointer. 
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The CPIR Instruction 
The program above is almost an exact duplication of the way the CPIR instruction works. An 
equivalent program using CPIR is shown here. Delete lines 100 through 230 and enter this code: 

240 ;BLOCK COMPARE USING CPIR 

2!50COMPA1 LD HL,7900H ;start of data 
260 LD BC,32 ;size of block 
270 LD A,23 ;search value 
280 CPIR ;test for value 
290 END ;end 

Assemble and try this program the same way that you ran the previous block compare. The settings of 
BC, HL, and the Z flag should be the same. 

The CPIR saves quite a few instructions. It does the entire search of the list or table in one instruction! 

Here's a reiteration of how to use CPIR: 

• Set HL to point to the start of the block 
• Set BC to the number of bytes in the block 
• Set A to the search key 
• Do CPIR 
• If Z, then HL points to one more than the value in the block. If NZ, then the key was not found. 

The CPD R Instruction 
The CPIR instruction mnemonic stands for "Compare and Increment"; the CPDR is "Compare and 
Decrement:• In the CPDR case, the block search is made from end to beginning instead of from 
beginning to end. To use the CPDR: 

• Set HL to point to the last address of the block 
• Set BC to the number of bytes in the block 
• Set A to the search key 
• Do CPDR 
• If Z, then HL points to one less than the address of the value in the block. If NZ, then the key was not 

found. 

Suppose we wanted to write a program to search the 7900H area from end to beginning. What would it 
look like? Try your hand at it, before continuing. 

Got it? See how it compares with the program below: 

300 ;BLOCK COMPARE USING CPDR 

310COMPA2 LD HL,791 FH 

320 LD BC,32 

330 LD A,23 

340 CPDR 

3!50 END 

;end of data 
;size of block 
;search value 

;test for value 
;end 

Enter this program after first deleting lines 240 through 290. Assembly and execute to see how the 
program works; use different data values in A (change the immediate load instruction) and different 
data in the 7900H area. 
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As we described above, the HL register in the CPDR case points to one less than the address, if the value 
is found. 

Using CPIR and CPDR to Scan A Table 
At first it seems like having the HL register pointing to one greater (CPIR) or one less (CPDR) than the 
found value is a nuisance. However, this can be turned into an advantage. Suppose that we wanted to 
count the number oftimes a certain value was found in a table. We could do it fairly easily by using CPIR 
or CPDR. 

Enter this code after deleting lines 300 through 350 ( or load the second LESS 16). 

360 ; SCANNING A TABLE WITH CPIR 

370SCNTAB LD 

380 LD 

390 LO 

400 LD 

410 SN010 INC 

415 CPIR 

420 JR 

430 JP 

440 INC 

450SCN020 END 

HL,7900H 

BC,32 

A, 1 

0,-1 

0 

NZ,SCN020 

PE,SCN010 

0 

;start of table 
;32 bytes 
;search key 
;initialize count 

;bump count 
;search for key 
;go if not found 
;go if not done 
;last increment 

;end, D holds count 

This program uses CPIR to scan the 7900H through 791 FH area. If the search key in A is not found, the 
first CPIR will immediately transfer to the END at SCN020. lf at least one value is found that 
corresponds to the search key, then the count in the D register is incremented by one and the program 
loops back to SCNO IO for the next try; at this point H L, BC, and A are properly set to look for the next 
occurrence of the value! 

What is the JP PE,SCNOlO instruction all about? That's part of the CPIR and CPDR operation that we 
left out in the above discussion. The P / V flag is set ( l) as long as the byte count in BC is not zero. When 
the byte count reaches O (when the end of the table has been reached), the P / V flag is reset (0). 

The JP PE,SCNO 10 conditional branch tests the state of the parity/ overflow flag. PE corresponds to the 
P /V flag being set, while PO corresponds to the P /V flag being reset. Unfortunately, the mnemonics for 
the P / V flag are not as descriptive as the mnemonics for other conditions, and you'll have to do a little 
translation here. 

It's possible, by the way, to have both a "match" (found key) and the end of the table. In this case, the 
search key value is in the last entry of the table. 

Try running the prngram above with various search key values (change the immediate load of A) and 
different data. D will hold the number of times the search key value is found in the table. 

CPI and CPD Operation 
CPI is very similar to CPIR and CPD is very similar to CPDR. CPI searches forward, while CPD 
searches backwards. The registers are set up the same way before the CPI and CPD. 

About the only difference between the two sets of instructions is that CPI and CPD execute only one 
"iteration" instead of going through the entire block! It's up to the programmer to loop back to complete 
the scan of the block. To implement a block search using CPI, for example, we'd have something like: 
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16 Block Compares 

:BLOCK COMPARE USING CPI 

COMPAR LO 

LD 

LO 
COM010 CPI 

JR 
JR 

NOTFND 
FND 

HL,7900H 

BC,32 

A,23 

Z,FNO 

PE,COM010 

;start of data 
;size of block 
;search value 

:test for value 
;go if found 
;go if more 

;not found here 
;found here 

The CPD would work the same way in reverse. Whenever PO occurs, the entire block has been scanned. 
The Z flag is checked before the P / V flag, allowing for the case of the value being in the last entry of the 
table. 

What is the good of CPI and CPD? Why not simply use CPlR and CPDR instead of using the 
"overhead" of looping back to the CPI and CPD? 

The chief reason is that the CPI and CPD allow the automatic incrementing of HL and decrementing of 
BC to be "broken out" from a single instruction. We can now do one compare at a time and add other 
instructions between the compare and looping back to the CPI or CPD. 

Here's a good example of why CPI and CPD are useful. Suppose that we have a table with 3-byte entries, 
as shown in Figure LESS 16-J. The first byte of each entry is a one-character command abbreviation. 
The next two bytes are the "jump location"for the command. We can use the CPI to easilyscan the table 
for a given command. 
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'A' 

OOH 

AOH 

'F' 

41H 

AOH 

'G' 

OOH 

A1H 

'S' 

OOH 

OOH 

ADDRESS1 

ADDRESS2 

ADORESS3 

AODRESS4 

Figure LESS16-1. CPIR Use 
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460; SCAN TABLE USING CPI 

470SCNCPI LO HL,TABLE ;start of table 
480 LO BC,4 ;number of entries 
490 LO A,(7900H) ;search character 
!500 SCN011 CPI ;compare entry 
!510 JR Z,SCN021 ;go if found. 
!520 INC HL ;point to next 
!530 INC HL 
!540 JP PE,SCN011 ;go if not done 
!550 LO HL,O ;mark not found 
!560SCN021 DEC HL ;start of entry 
!570 LO (7901H),HL ;store pointer 
!580 JR STOP ;end 
!590TABLE DEFM 'A' ;ABORT command 
600 DEFW OAOOOH ;ABORT program 
610 DEFM 'F' ;FIND command 
620 DEFW OA041H ;FIND program 
630 DEFM 'G' ;GO command 
640 DEFW OA100H ;GO program 
6!50 DEFM ·s· ;SMITHEREENS command 
660 DEFW 0 ;reload system 
670STOP END ;end 

Enter the program above after first deleting source lines 360 through 450. Assemble the program. 

Now enter a one-character command into location 7900H. ASCII A, F, G, Sis 41 H, 46H, 47H, and 53H, 
respectively, or you may enter a character that is not present in the table. 

Execute the program, and you1l find the location of the command .. jump., table entry in 7901 Hand 
7902H, in reverse address format. Try both valid commands and invalid commands. An invalid 
command will result in a -1 in locations 7901H and 7902H. 

This program used the CPI to an advantage. After each compare in a CPI, the HL pointer was 
incremented by 2. (Don't forget that the CPI automatically incremented by one.) The BC register pair 
contains the number of entries rather than the number of bytes; when this is decremented down to Oby 
the CPI, all entries in the table have been searched. 

Couldn't we have used a CPIR in this program? Not really. The CPI R would have searched the table for 
a given key- all bytes of the table, both the one-letter command abbreviation and the address alike. If 
we were searching for an .. A" (41 H), then the CPIR would have found an erroneous "A" in the address 
byte for FIND; the first byte of the FIND program address is also a 41 H. 

To Sum It All Up 
To recap what we've learned here: 

• There are folir block compares, CPIR, CPDR, CPI, and CPD 

• The CPIR searches for a given search key 

• The CPIR is a forward search of a block 

• CPIR preparation requires that HL be set to the start of the block, BC to the size of the block, and A 
contain the search key 

• After the CPIR, Z is set if the key is found, and HL points to the location of the value plus one 
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• The CPDR works in similar fashion to CPlR, but from the block end to the beginning; H L points to 
one less than the value if found 

• CPIR and CPDR can be used to scan a table for more than one entry 

• The P/V flag is set to "PO" after a CPlR or CPDR to mark the end of the block 

• The CPI and CPD work the same as CPl R and CPDR except that only one iteration is made 

• The CPI and CPD arc useful in cases where a search is made of multiple-byte entries in tables 

For Further Study 
LDI, LDR 
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Lesson 17 
Subroutine Use 

Up to this point in the lessons, we've been using programs that use loops to execute code over and over 
again. There is another type of program structure that allows us to use code more than once - the 
subroutine. 

Subroutine Basics 
Subroutines may be from one to thousands of instructions long. If any set of instructions is executed 
more than one time, the instructions may be made into a subroutine in one place in memory to save 
memory space, and to save time in "coding." 

A subroutine is "called" by a CALL instruction; a RE Turn instruction marks the end of the subroutine. 
A simple "timing loop" subroutine, for example, might be something like: 

; DECREMENT HL DOWN TO -1 AS TIMING LOOP 

TIME LP LO BC,-1 

TIM010 ADD HL.BC 

JP 

RET 

C,TIM010 

;for decrement 
;count in HL-1 
;go if not thru 0 

;return 

This timing loop might be called every time that you wanted a delay in the program; it delays about 
I/ 1000th second ( l millisecond) for every l 00 counts in HL, to show you how fast assembly language is. 
A typical call would be 

LO 

CALL 

HL,200 

TIMELP 

;load timing count 
;delay 2 milliseconds 
;return here 

As you can see from the above, a return is made to the instruction after the CALL. The Z-80 records the 
location of the next instruction after the call by taking the contents of the PC (Program Counter) and 
saving it in the "stack:' an area of RAM. The RET instruction retrieves the location from the stack and 
puts it back into the PC to cause a jump back to the location after the CALL. 

Let's investigate what the stack is and where it is located to see how the CALL and RETURN work. 
Enter the program below, or use the existing source code in the Lesson File: 

1005:TART LO SP,7EOOH ;load Stack Pointer 
110 LO HL.100 ;delay count 
120 CALL TIMELP ;call delay 
130 HERE JR HERE ;loop 
1 40 ; DECREMENT HL DOWN TO -1 AS TIMING LOOP 

1!50TIMELP LO BC,-1 ;for decrement 
160TIM010 ADD HL,BC ;count in HL-1 
170 JP C,TIM010 ;go if not thru 0 
180 RET ;return 
190 END ;end 

Assemble and get an error-free assembly. Now trace the area at 7DFOH), and set the speed by 

ZS 9999 

Here's what should happen when you execute the program: The Stack Pointer register should be loaded 
with 7EOOH; you should see this change in the register trace area. 
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Now the HL register is loaded with 100. Next. the CALL jumps to location TI MELP. The jump action is 
the same as a JP as far as the transfer of control. 

The CALL. however, does one more thing. If you look at the locations 7DFEH and 7DFFH, you'll see 
the address of the return point after the CALL The CALL has stored the return point by using the SP 
register as a "register indirect" pointer. 

When you see the return address stored, look at the contents of the Stack Pointer. It started off with 
7EOOH, but after t.he CALL it reads 7DFEH. 

The SP is automatically decremented hy 2 for every return address stored in the stack area. The 
"stack area"in this case started at. 7DFFH and "builds" down, as the CALL decrements the SP register 
by 2. 

While the timing loop is delaying, keep your eye on the SP. As soon as the timing loop is over, the return 
address is loaded into the PC from the stack as the RET is executed. At the same time, the SP register is 
incremented by 2. After the RET, the SP again points to location 7E00H, and the instruction after the 
CALL is executed. 

Execute the program and observe the actions. Press BREAK to get back to Command Mode. 

A clarifying point about something that may be puzzling you: The timing loop subroutine indeed delays 
about I/ 1000th of a second in normal Z-80 assembly-language programs. However, in the ALT we're 
"interpreting" each instruction, and this adds quite a bit more time to execution. The advantage, of 
course, is that we can see things happening and provide control over instructions that might do 
erroneous jumps and stores. 

The Stack 
The operation above is pretty typical of how the stack is used for subroutine calls. The stack can be any 
area of memory that will be unused by the system or by your own program. Of course, it has to be RAM, 
as we're both reading and writing into it by RETs and CALLs. 

The stack area is normally set once at the beginning of the program, by the 

LO SP.7EOOH 

or similar instruction. Note that the SP is loaded with one more than the first stack location used. The 
SP is always decremented first, before the store of the CALL address. 

Normally, you don't have to worry too much about setting the SP. BASIC, TRSDOS, and other 
programs always set the SP to the stack area used in their programs, and it's available for everybody 
else's use too. Sometimes, though, you want to control the stack yourself, and in that case you'll use the 
LD,SP to point to your own stack area. 

Normally the stack area should be about 100 bytes or so. All this means is that you must make certain 
that the SP is set to the last location of a memory area that won't be used by anything else. 

Nested Stack CALLs 
Not only can you CALL a single subroutine, but that subroutine can CALL another subroutine, and 
that subroutine can CALL another, and so forth. How many CALLs can you make? Theoretically, as 
many as you want. Each time you make a CALL, another return address is saved in the stack, and that 
takes 2 bytes. If you have lO "levels" of subroutines, you've used up 20 bytes of the stack, and the SP 
register points to the original location minus 20 bytes. 

Let's see an example of a "nested" set of subroutines. Delete the previous source lines and enter the 
program below: 
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200 ; NESTED SUBROUTINES 

210 NESTSR LO 

220 CALL 
230HERE1 JR 

240SUBR1 CALL 
250 RET 

260SUBR2 CALL 
270 RET 

280SUBR3 CALL 
290 RET 

300SUBR4 RET 

310 END 

SP,7EOOH 

SUBRt 

HERE1 

SUBR2 

SUBR3 

SUBR4 

;stack area 
:call subroutine l 
;return point J 

:call subroutine 2 
;return point 2 

;call subr 3 
;return point 3 

;call subr 4 
;return point 4 

;return 
;end 

Assemble this program, and then execute at a very slow speed, while tracing the 7E00H area (ZT 7DF0). 
Keep your eye on the 7E00H area from 7DFFH on down and also observe the SP register. 

What did you see? 

You should have first seen the SP load with 7E00H. It points to one more than the first stack area 
location. The CALLS U BR I should have stored the address oft he JR HERE instruction into locations 
7DFEH and 7DFFH, in reverse address format. 

SU BR l consists of another CALL, to SUB R2. This should have stored the address of return point 2 into 
locations 7DFCH and 7DFDH. 

SUBR2 consists of another CALL, to S UBR3. This should have stored the address of return point 3 into 
locations 7DFAH and 7DFBH. 

SUBR3 consists of a fourth call, to SUB R4. This should have stored the address of return point 4 into 
locations 7DF8H and 7DF9H. 

At this point the stack area appears as shown in Figure LESS 17-l. The four return points are "4 levels 
deep" in the stack, and the SP points to location 7DF8H. 

STACK 
POINTER 

NOW POINT 
HERE 

s 

__ ...., 
ORIGINAL 

STACK POINTER 
VALUE POINTED 

HERE 

.. 
--
-

-

LOW 
MEMORY 

RETURN 
FOR SUB4 

RETURN 
FOR SUB3 

RETURN 
FOR SUB2 

RETURN 
FOR SUBR1 

HIGH 
MEMORY 

-

-

70F8H 
7OF9H 

7OFAH 
70FBH 

7OFCH 
70FOH 

70FEH 
7OFFH 

7E00H 

Figure LESS17~1. Stock Use on CALLS and RETs 

When the RET in SUBR4 is executed, the R ET causes return point 4 to be put into the PC, causing a JP 
to return point 4. The stack pointer now points to location 7I)FAH. 
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} 7 Subroutine Use 

Return point 4 is also a RET, causing a JP to return point 3 and resetting the SP to 7DFCH. 

Return point 3 is also a RET, causing a JP to return point 2 and resetting the SP to 7DFEH. 

Return point 2 is also a RET, causing a JP to return point land resetting the SP to 7EOOH, the original 
setting. 

If you didn't see all the actions of this program, execute it again, and watch the stack actions closely. 
There's nothing too mysterious about it. 

This type of nesting is very common in many programs. Of course, this program does nothing except to 
illustrate the stack, and normal programs would have a great deal of "code" between the entry to the 
subroutine and the next CALL or RET. 

Usually you won't use more than about 3 or 4 levels of subroutines. It's just too hard to keep track of 
where you are if you use more and usually not necessary. 

A CALL for Every RET 
If you look at the program above, you'll see a RET instruction for every CA LL. If there wasn't an RET 
for every CALL, what would happen? 

The answer is that the stack would get "out of sync." The wrong return point would be picked up on a 
RET. If you repetitively call the stack with this condition, you'll soon run out of stack and into another 
memory area, probably part of your program or a system program. That will put "garbage" (in 
programming terms) into the program area and cause your program or the system program to blow up. 

This condition is called stack overflow ( or underflow, depending upon which direction the stack goes out 
of bounds) and is a common programming bug! 

For example, if you had: 

EXAMP CALL SUBR1 ;call subroutine 

SUBR1 ;subroutine code here 

JP EXAMP ;return s/b RET! 

the JP back to EXAM P would cause SUB R 1 to be called again, putting the return point in the next two 
bytes, and this would continue indefinitely with the return point being stored in lower and lower 
locations until the stack overflowed into a program area. 

Types of CALLs and RETurns 
We used a simple CALL and RET in the examples above. These were "unconditional" CALLs and 
RETs similar to the unconditional JPs. 

There are a number of conditional CALLs and~RETs, however, that can CALL a subroutine or return 
from a subroutine based on the results of a previous operation. These are very similar to conditional JPs. 

The conditional CALLs are 

CALL NZ CALL PO 

CALL z CALL PE 

CALL NC CALL p 

CALL C CALL M 

The conditions have the same meaning as the conditions for the JPs and are easy to remember because of 
their similarity. As an example of a conditional CALL, you might want to call a subroutine if two 
numbers were identical: 
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CP 
CALL 

UY+2> 

Z,SUBRt 

The conditional RETurns use the same conditions as the CALLs 

RET NZ 

RETZ 

RET NC 

RET C 

RET PO 

RET PE 

RET P 

RET M 

;test A with B 
;go to subr if A=B 

Here again, the return can be made if A=B, if there is a carry, or another condition, depending upon your 
requirements. 

In the next lesson we'll continue our discussion of the stack and show you some further stack actions. 
We'll also show you some usable subroutines that consist of more than CALLs and RETs! 

Important Note 
Use the ZRSP= command to reset the Stack pointer to -1 (FFFFH). If you do not do this, executing 
subsequent lessons may produce a 'JP, REF, OR STK OUT OF OBJECT' error. The Stack Pointer 
must be reset to high memory and doing a 

ZRSP=FFFF 

will properly reset the stack area. 

To Sum It All Up 
To review what we've learned in this lesson: 

• Subroutines are a collection of instructions that are used more than once and are in one location in 
memory 

• Subroutines save memory and coding time 

• Subroutines may be from I to many instructions long 

• Subroutines are called by a CALL instruction and ended by a RET instruction 

• A CALL saves the address of the instruction after the CALL in the stack 

• A RET gets the last return address from the stack and causes a jump back to that point 

• The stack area in memory is any convenient memory area that can be set aside for stack actions 

• The SP (stack pointer) points to the stack area 

• The stack area "builds down"; each CALL stores 2 bytes of the return address into the next 2 lower 
stack locations 

• Subroutines can be "nested" as often as required 

• There must be a RET for every CALL 

• There is one unconditional CALL and one unconditional RET; there are also conditional CAL Ls and 
RETs that use the same condition "codes" as the JP 

For Further, Study 
Instruction formats for CALLs and RETs (Appendix V) 
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Lesson 18 
Other Stack Operations 

Load LESS18 from cassette. 

Important Note 
Before starting this lesson, check to see that the Stack Pointer is properly set. It should read FFFF in the 
register line. If it does not, execute 

ZRSP=FFFF 

to reset it to FFFF. The SP will automatically change to another value after you execute a ZX 
command. This is normal. 

In the last lesson we looked at CALLs and RETurns for subroutines. In this lesson we11 look at another 
use of the stack - storage of temporary results. 

Stack Uses 
In the last lesson we said that the stack was used for storage of addresses when a CALL was executed to a 
subroutine. There are actually three uses for the stack: 

• Saving return address for CALLs 
• Saving temporary data for PUSH and POP use 
• Saving the interrupt point for interrupts 

We've already described what happens in CALLs, but we11 talk about the other two uses here. 

Interrupts 
One of the two uses of the stack is somewhat esoteric. Interrupts are external or internal inputs to the 
system that signify a '-'real-world" event. One example might be an interrupt from a remote keyboard. 
During the time that no key is pressed, the program would run normally. When a key was pressed, 
however, an "external" interrupt could be generated that would cause the Z-80 cpu to stop processing 
after the current instruction and to jump to a special interrupt-processing routine. 

The interrupt-processing routine is simply another assembly-language program that would take the 
required action for the external interrupt. In this case, the remote keyboard interrupt handler would 
probably read in the character from the keyboard and store it in a "buffer;• or storage area. 

The interrupt action itself causes the interrupt point to be put into the stack in a very similar fashion to 
the CALL. A RETI, or Return From Interrupt, instruction at the end of the interrupt-processing 
program would retrieve the interrupt point address from the stack and put it into the PC register in an 
almost identical action to a normal RET. 

Interrupts are used primarily to let the Z-80 cpu number crunch away on a "background" job, such as 
running a business package, while a high-priority "foreground" task infrequently interrupts for a 
response to its action. 

Another example of interrupts is the "real-time" clock interrupt. This interrupt occurs every 33 
milliseconds or so (33/ lOOOths of a second) and causes the RTC interrupt-processing routine to be 
entered. The RTC interrupt processing increments a count which is used to keep time in the system. 

We won't be discussing interrupts any further in this text. Suffice it to say that they are used infrequently 
and in special systems applications. 

PUSHes and POPs 
The remaining use for the stack, however, is used all the time. A PUSH "pushes"a register pair onto the 
stack, while a POP "pulls" two bytes of data from the stack and puts it into a register pair. 
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18 Other Stack Operations 

Why the ''PUSH" and "POP'w? The stack can be thought of as a "push-down stack" similar to a dinner 
plate stacker in Joe's Greasy Spoon. A PUSH or CALL pushes a plate (two bytes) onto the stack. 
Further plates can be pushed on top of the previously pushed plates. 

A POP or RET "pops up" the last plate (two bytes) pushed. Successive POPs or RETs pop up the 
stacker until no plates are left. 

The available PUSHes are: 

PUSH AF 

PUSH BC 

PUSH DE 

PUSH HL 
PUSH IX 

PUSH IY 

There is a corresponding POP for every PUSH -- POP AF, and so forth. 

Let's see how the PUSHes and POPs work. Use the Lesson File for this program: 

1 0C) ;••·························································································· 
1 10 ; SCAN TABLE FOR SMALLEST ENTRY SUBROUTINE 

1 20 ; ENTRY: (IX)=>TABLE 

1 30 : (B)=SIZE OF TABLE 1-255,0=256 

140; 

150; 

EXIT: UX>=>SMALLEST ENTRY IN TABLE 

(A)=SMALLEST ENTRY 
160 ; .......................................................................................................................... . 

170 SCANTY LO C,0X) ;get first byte 
180 PUSH IX ;initialize stack 
190 SCNO1O LO A,CIX) ;get byte 
200 CP C ;test with lowest 
210 JR NC,SCNO2O ;go if C>=A 
220 LO C,A ;new lowest 
230 POP DE ;previous pntr 
240 PUSH IX ;save this loc'n 
2l5OSCNO2O INC IX ;point to next 
260 OJNZ SCNO1O ;go if not end 
270 POP IX :get pointer 
280 LO A,C ;lowest in A 
290 RET ;return 

-----------------------------
Don't try to execute this program yet. 

This program is a complete subroutine, as we talked about in the last chapter. It is a complete set of code 
to perform one specific function, to scan a table for the smallest byte in the table. If we had a table 
consisting of the one byte entries of 45,3,47,89, !00,2,3,4,56, the subroutine would find the 2 entry in the 
table. 

It's common to divide a large programming job into many different subroutines, each performing a 
simple function. Another trick that's used is to make each subroutine as "generic" in nature as possible. 
In this case, we didn't limit ourselves to any table or any size table. We left the location and size of the 
table variable! 

The location and size of the table are called parameters that are input to the subroutine. On entry into the 
subroutine, the index register IX points to the table start, and the B register holds the size of the table. 

On exit, the IX register points to the location of the smallest entry in the table and the A register holds the 
actual entry itself. These are the output parameters. 
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"Parameters" might be called arguments, or "gozintas" and "gozoutas." 

Because we've made SCANTY general, we can use it to scan any table of any size and it becomes a 
"general-purpose" subroutine. 

SCANTY uses PUSHes and POPs for temporary storage. Let's see how it does this. 

First of all, IX contains a pointer to the table on entry, and B contains the size of the table. The table is 
made up of from I to 256 one-byte entries. If B is initially 0, it denotes a 256-byte table. 

The first thing that SCANTY does is to pick up the first table byte. This may turn out to be the 
lowest-valued byte, but probably isn't. The location of this byte (location in IX) is then PUSHed onto 
the stack. The stack now looks like Figure LESS 18- l A. 

-4 

-3 

-2 

-1 

+O 

-4 
• f-

-3 

-2 . ,._ 
-1 

+O 

LOW 
MEM 

LOCATION 
OF TABLE BYTE 

RETURN 
ADDRESS OF 

CALLING PROGRAM 

HIGH 
MEM 

(A) 

LOW 
MEM 

LOCATION 
OF TABLE BYTE 

RETURN 
ADDRESS OF 

CALLING PROGRAM 
HIGH 
MEM 

(C) 

-SP AFTER 
PUSH 

-3 

ORIGINAL -2 
SP 

-1 

+O 

.--.SP AFTER .... PUSH 
-3 

-2 

-1 

+O 

f 

LOW 
MEM 

--- ----------

RETURN 
ADDRESS OF 

CALLING PROGRAM 
HIGH 
MEM 

(B) 

LOW 
MEM 

-- - ---------

RETURN 
ADDRESS OF 

CALLING PROGRAM 

HIGH 
MEM 

(0) 

Figure LESS18-1. Stack Use on PUSHes and POPs 

-SP AFTER 
POP 

SP AFTER 
POP 

The loop from SCN0IO is the main (the only) loop of SCANTY. It will go through the table and compare 
each byte with the current low byte. If any byte is lower than the current low byte, it will be stored in C 
and its location will be saved in the stack. We're starting off with the first byte and its location as an 
arbritrary initial value. 

In the loop, the next byte is picked up and put into A. A is then compared with C, which holds the current 
lowest byte. 

If the next byte is greater than or equal to C, SCN020 bumps the IX pointer to the next location and the 
count in Bis decremented, causing a loop back to SCN0I0. 

If the next byte is less than the current, it replaces the contents of C. Then, the POP DE pops the stack 
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} 8 Other Stack Operations 

and puts the current. local.ion into DE. (See Figure LESS 18-18.) This is done only to reset the stack. to 
get rid oft he current location. Next, the PUSH IX pushes the current location into the stack as shown in 
Figure LESSHHC 

Aflcr the loop is over {the count in B goes to 0), the C register holds the lowest value in the table and the 
stack holds the location of !.hat lowest value. 

Note that when we say, '·the stack holds ... ," what we really are saying is that "the stack currently holds a 
16-bit data value; no corresponding POP has been issued for it." The stack might hold three or four 
different 16-bit values at this point, depending upon the program. Just remember that when the stack is 
used for temporary storage in this way, we'll have to eventually use the values, or at least reset the stack 
pointer by dummy POPs. 

Another interesting point: Although we used a PUSH IX to save the location in the stack, there's no 
reason at all that we have to POP that value back into the IX register. In fact we're POPping it into 
another register, the DE register pair. Once 16-bit values are in the stack, they can be POPped by AF, 
BC, DE, or HL at will. 

After the loop, we POP the location into the IX register, as shown in Figure LESS18-ID. The lowest 
value in C is then put into A. 

The last instruction is a RETurri that POPs the return address of the calling program. The term "calling 
program" means that another program has called the SCANTY subroutine. 

Want to see how SCANTY works? Why don't you write some code that will CALL SCANTY? Make the 
table start at location 7900H and make it a size of 32. You can do it in 4 instructions, counting a 90 STOP 
JR END. Put the four instructions at source lines 60, 70, 80, and 90, before the SCANTY subroutine. 

Got it'! It should look like this: 

60 
70 
80 

90 STOP 

LO 
LO 
CALL 

JR 

IX,7900H 

B,32 

SCANTY 

STOP 

;location of table 
;table size 
;call scanty 
;go to STOP 

Assemble all of the source lines, fill the 7900H area (from 7900H through 791 FH) with any data, and 
execute from line 60. 

At the end of the execution the IX register should point to the lowest value in the 7900H area. and the A 
register should contain the lowest value itself. 

Multiple Subroutines 
We now have a standard general-purpose subroutine for searching any table of 256 bytes or less for the 
lowest value. What can we do with it'? 

One idea that comes to mind is to use it for a two-buffer sort. Remember in a previous lesson when we 
implemented a bubble sort? We mentioned the two-buffer sort and said that it required twice the storage 
space because we needed an extra buffer. What the heck, memory is cheap. so let's implement this 
version of a sort. 

To do this, we'll need two more subroutines. List lines 310 through 380 to see these: 
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300 : STORE ENTRY IN A INTO (IV) LOCATION 

31 0 STORE LO (IY),A 

320 INC IV 

330 RET 

340 ;MARK OLD ENTRY WITH -1 

3!SOMARK LO 

360 LO 

370 RET 

A,OFFH 

(IX),A 

;store entry 
;bump IY 
;return 

;-1 
;store -1 
;return 

The first of these, STORE, stores the contents of A into the location pointed to by IY. 

The second, MARK, marks the location pointed to by IX with a -1 (i.e. stores a -1 value in the location). 

Given these three subroutines, can you construct a IO-instruction program to sort 16 bytes of data in 
locations 7900Hthrough 790FH into a second buffer at 7910H through 791FH? Watch the B register! 
Try it before looking at the following code: 

380 : TWO-BUFFER SORT 

390SORT LO IY,7910H ;point to second buffer 
400 LO B,16 ;count 
410 SOR010 PUSH BC ;save count 
420 LO IX,7900H ;point to first buffer 
430 LO B,16 ;size of first buffer 
440 CALL SCANTY ;find lowest entry 
4!50 CALL STORE ;store in 2nd buffer 
460 CALL MARK ;delete 1st buf entry 
470 POP BC ;get count 
480 DJNZ SOR010 ;loop if not done 
490 END ;end 

This sequence uses the three subroutines to do the sort. The first, SCANTY, finds the location and value 
of the lowest entry in the 7900H buffer. 

The second, STORE, stores the value in A into the 7910H buffer by using IY as a pointer. 

The third, MARK, sets the original location of the current value in the 7900H buffer to -1. A value of -1 
is used as a flag to say .. this location already was a lower value and is not be used from this point." 

Before the CALL to SCANTY, IX and B must be initialized to point to the 7900H buffer and for a count 
of l 6, respectively. 

About the only .. tricky" part of SORT is using a PUSH BC to save the count before the CALL to 
SCANTY is made. If this were not done, the loop count in B would be destroyed by the table size 
parameter. After the three subroutines, the count in B is restored by a POP BC. This type of operation is 
very common in saving registers. Note that even though we had the count only in B, both Band Chad to 
be pushed. There is no .. PUSH B:' 

Run SORT at a slow speed after entering data in the 7900H area. Execute from the starting address of 
SORT(ZX mmmm). You should seethe 7910H area fill up with ordered data and the 7900H area fill up 
with 0FFH values. By the way, this SORT also works with 0FFH values (-1). Do you see why? 

We'll be using PUS Hes and POPs frequently from this point on, so review the Less9n from the start if 
you are confused about the PUSH, POP action. 
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To Sum It AU Up 
To review what we've learned here: 

• Interrupts use the stack by pushing the return address for the interrupt in the stack 

• PUSHcs and POPs are used to temporarily store data in the stack 

• Register pairs AF, BC, DE, and HL can be PUSHed or POPped 

• There must be a POP for every POSH, or the stack must be reset by "dummy" POPs 

• Subroutines are often small segments of "generalized" code that work for many different sets of 
conditions 

• Parameters are often passed to and from subroutines: these parameters are "arguments" that define 
the conditions for the subroutine 

• Once data is in the stack, it is not related to any 
register pair may be used to retrieve the data 

pair; the same register pair or a different 

For Further Study 
RETl, RETN action (Appendix V) 
PUSH, POP formats····· private study 
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Load LESS J 9 from cassette .. 

Lesson 19 
Shifting Data 

Up to this lesson we've generally been working with one byte of data or two bytes of data. A lot of 
assembly- language code is concerned with manipulating bits. There are a number of instructions that 
allow us to set, reset, and test bits, and we'll cover them in following lessons. In this lesson, however, 
we're going to look at shift instructions, instructions that also manipulate bits, but do so a byte at a time. 

Rotates 
Rotates 011 A 
The original 8080 predecessor of the Z-80 had four shift instructions - R LCA, R LA. R RCA. and 
RRA. These instructions were a class of shifts called rotates. 

The four rotates operate on the A register, as this is the main accumulator, or working register, in the 
8080 and Z-80. 

The instructions rotate the A register either to the right or left, one bit at a time, as shown in Figure 

LESSl9-I. i,, ;:J _ I. 1 -,_o 
~....-:: --A - . 

lciJ:t-----,.------"-,,)] 
Lt _-_·--_·~-"'::_-:_ -_ -o_ ...... ~ 

q-· •-,. _,. _o 1--@J 

Al.CA (LEFT INTO 
BIT (I ANO C) 

ALA {U:FT INTO C, 
C GOES TO BIT 0) 

RRCA (RIGHT !NTO 
BIT 7 ANO C) 

RRA (RIGHT INTO C, 
C GOES TO arr 7) 

Two of the instructions. RLCA and RRCA, rotate just through the A regbter it.self. This is an 8-bit shift. 

The remaining two instructions, RI .A and RR A, work wil h the A register and Carry flag. This is a 9-bit 
shift 

To see how these work, enter the following program or use the Lesson Fik: 

1 00 ;RLCA, RLA, RRCA, RRA OPERATION 

110 ROTOEM LO 

120 LO 

130 ROT010 RLCA 

140 DJNZ 

150 LO 

160 ROT020 RRCA 

170 OJN:Z 

180 LO 

190 ROT030 RLA 

200 D.JNZ 

210 LO 
220ROT040 RRA 

230 DJNZ 

240 END 

A,OBH 

B.8 

ROT010 

a.a 

ROT020 

B,9 

ROT030 

B,9 

ROT040 

Joa<l test pattern 
;loop count 

:rotate 
:do 8 times 

:loop count 
:rotate 
;do 8 times 

:loop count 
:thrnugh carry 
;do 9 times 

;loop count 
;through carry 
;do 9 times 

;end 
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} 9 Shifting Data 

Set the speed to a slow setting and run the program. The following things should happen: 

The R LCA loop will rotate the A register to the left, one bit at a time. As each bit is shifted around from 
bit 7 back into A through bit 0, you should also see the bit going into the Carry Flag. Eight shifts are done 
and at the end of the time, the A register should have the original value of 0BH or 00001011. 

The RRCA loop will rotate the A register to the right, one bit at a time. As each bit is shifted around 
from bit 0 back into A through bit 7, you 11 also see the bit going into the Carry flag. Eight shifts are done. 
At the end of the shifts, A will have the original value. 

The RLA loop starts with the 0BH value in A. Nine shifts are done to the left, with bit 7 going into the 
Carry flag and with the previous contents of the Carry flag going back around into bit 0 of the A register. 
At the end of the shifting, A will contain 0BH. 

The RRA loop starts with the 0BH value in A. Nine shifts are done to the right, with bit 0 going into the 
Carry flag and with the previous contents of the Carry flag going back around into bit 7 of the A register. 
At the end of the shifting, A will contain 0BH. 

The RLCA, RLA, R RCA, and RRA instructions are used primarily to "align" data or sometimes to test 
the state of each bit in the A register. The only Flag that is set by these four instructions is the Carry flag, 
set according to the state of the bit shifted out of the register (the N and H Flags are reset). 

As an example of this type of shift, suppose that we wanted to test the "parity"ofthe bits in the A register 
as a check on the validity of data read in from an external device. Suppose that we were reading ASCII 
bytes from an RS-232-C interface 1.n the Model I or III. ASCII data is a 7-bit code, with the 8th bit (bit 7) 
either unused and set to 0 or l or used as a parity bit (see Appendix VI). 

If even parity is used, then bit 7 is set to make the total number of l bits even. If odd parity is used, then 
bit 7 is set to make the total number of l bits odd. Sample ASCII data with the "parity bit" set is shown in 
Figure LESSI9-2. 

ASCII 7-BIT ASCII PARITY BIT 
CHARACTER CODE ADDED #1 BITS 

A 1000001 0 1000001 2 
B 1000010 0 1000010 2 
C 1000011 1 1000011 4 
D 1000100 0 1000100 2 
M 1001101 0 1001101 4 
z 1011010 0 1011010 4 

tPARITY BIT 
ADDED TO 
MAKE TOTAL 
NUMBER OF 
1 BITS EVEN 

Figure LESS19-2. ASCII Data with Parity 

How could we count the number of I bits in the A register as a check on the received data byte? 
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A program for this is shown below. It is on the next portion of the Lesson File. 

2!50 : GET EVEN PARITY OF BYTE IN A 

260PARITY LO c.o ;set parity to 0 
270 LO B,8 ;set loop count 
280 PAR010 RLCA ;shift out bit 
290 JR NC,PAR020 ;go if a zero bit 
300 INC C ;count # I bits 
310 PAR020 OJNZ PAR010 ;loop for 8 bits 
320 LO A,C ;get count 
330 AND ;test parity 
340 END ;Z if parity ok 

This program will count the number of I bits in A by shifting out the bits I at a time, testing the Carry 
flag, and incrementing a count in C if the bit is a I. At the end of the counting, C holds the number of I 
bits. An AND I then gets the least significant bit in C. This bit is I if the number of I bits is odd or 0 if the 
number of I bits is even, and is therefore the parity of the value in A. The Z flag is set according to the 
result. (It will be opposite to A.) 

If the ASCII data is coming in with even parity, then an NZ condition after any test will indicate that the 
ASCII character was somehow garbled. If an ASCII A was changed from 0 100000 I (with the parity bit 
set to 0) to 01100001, then the parity would be off, as it would be odd instead of even (Z). 

Try running the above program with various values in A. Make a manual count of the number of I bits. 
Store the value in A before execution by using the ZR A= command. 

Other Rotates 
As we mentioned before, RLCA, RLA, RRCA, and RRA were the "original" 8080 rotates. There are 
four more rotates in the Z-80, however, that work exactly the same as-the four previous rotates except for 
the following: 

• They can work with any register, A, B, C, D, E, H, or L or with a memory byte 
• They set the flags somewhat differently 
• They can shift a memory byte by using the (HL), or indexed addressing modes 

The four rotates and their A register equivalents are: 

Any Register Rotates 

RLC 
RL 
RRC 
RR 

A Register Rotate 

RLCA 
RLA 
RRCA 
RRA 

You can see that the new rotates have almost the same mnemonics as the A register rotates except that 
the" A" on the end is truncated (lopped off). They work the same in the shift action, either doing an 8-bit 
shift around to the opposite end of the register or through the Carry flag first. 

You can see how it would be useful to have the capability to shift any register or a memory location. 
These four instructions must have an operand. To rotate the B register left one bit you'd have 

RLC B ;rotate B 

To rotate the memory location pointed to by (HL) right one bit through the Carry, you'd have 

RR (HL) ;rotate memory 

The C, Z, P / V, and S flags are set for these "any register" rotates. The Carry flag is set to the bit shifted 
out of the register or memory location. The Z flag is set if the shifting results in a zero. The P / V flag is set 
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to the parity (numher of l afte:r the shi.ft (P / V= I if even, P V=0 if odd), and the S flag is set to l (M) 
or O (P) depending upon the bit in the bit after the shift. 

Here's a student exercise for you: How would you set the Flags to indicate the zero; no zero state, the 
parity, and the of the contents of memory location 7900H? You should be able to do this in several 
i.nstmctions. Try this short piece of code before continuing. 

Got it? 

One way to do it is by the following (delete line, 250 through 340): 

350 ;TEST L.OCATION 7900H 

360TEST 

370 

360 

390 

LO 
RLC 

RRC 

ENO 

HL.7900H 

(HU 

(HU 

;point to 7900H 
;shift to left 
;shift to right 
;end 

The R LC rotates out the contents of 7900H left and then right again. Nothing changes except the flags. 
·rhe C flag is set to the value in bit 7. The Z flag is set if the value in 7900 His zero. The S flag is set if the 
original value in bit 7 was a one. The P/ V flag is set to the parity of the byte in 7900 H. 

Try various values in 7900H and look at the results. 

RLD and RRD 
There are two other rotates that we should mention, as you've probably seen them in the instruction set 
and are wondering what they are. 

The R LD and R RD rotate, but they rotate four bits at a time, as shown in Figure LESS 19-3. The four 
bits in the least significant portion of the A register go into either the upper or lower four bits of the 
memory location pointed to by the HL register, used as an indirect pointer. 

RLD 

7 4 3 
A HH'Sff 

REGISTER BITS UNCHAN<l<O 

RRD 

7 4 3 
A fH£S.E 

REGISTER ans u~cHANGEo 

4 BITS 

4 BITS 

Figure LESS19-3. RLD and RRD Action 

0 

0 

MEMORY 
LOCATION 

POINTED TO BY 
(HL) 

MEMORY 
LOCATION 

POINTED TO BY 
(HL) 

What is the purpose of such a strange shift? The RU) and R RD are used when working with "bed," or 
binary--coded-decimal data. Binary-coded-decimal data represents decimal digits of 0 through 9 in 
groups of 4 bits: 

OO00=decimal 0 
000 l =decimal l 
00 IO=decima! 2 
00 l l =decimal 3 
0 l 00=decimal 4 

0!0l=decima! 5 
011 0=decimal 6 
0111 =decimal 7 
l 000=decimal 8 
IO0l=decimal 9 

The binary-coded-decimal values of l 0 IO through l l I I are not allowed. ln this method of representa­
tion, each binary byte holds 2 bed digits. The four binary bytes 
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000!0010 00110100 0lOlOl l0 0111 l001, 

for example, would represent the 8 bed digits 12345679. 

By using a special instruction, the DAA, we can add and subtract bed digits and have them come out 
properly. We'll see how in another lesson. 

The RLD and RRD, then, are geared toward moving bed digits around, either right or left, and operate 
four binary bits at a time, but one bed digit at a time. 

Although at first glance it seems like this might be a very powerful instruction that could be used to shift 
in 4 bit chunks, it is not very flexible as far as register use or addressing. 

To give you some practice in shifting, try the following problem: Write a program to rotate the memory 
locations from 7900H through 790FH four bits to the right. The four bits on the left (location 7900H) 
will rotate into the upper 4 bits of memory location 790F H, as shown in Figure LESS 19-4. Do this with a 
"normal" I-bit shift first, and if you feel ambitious. try it with an RRD. (Delete lines 350-390.) 

Figure LESS19-4. Rotate Example 

400 ; SHIFT ONE HEX CHARACTER RIGHT 7900H-791 FH 

41 0 SHFHEX L..D B,4 ;4 shifts 
420 SHT010 

430 

440 

450 

460SHT020 

470 

480 

490 

500 

510 

520 

530 SHT030 

540 

550 

OR 

PUSH 
LO 

LO 
RR 

INC 

DJNZ 
JR 

LD 

OR 

LO 

POP 
DJNZ 
END 

A :reset carry 
BC ;save count 
IX,7900H ;start of data 
B,16 ;inner loop count 
OX) :shift one bit to C 
IX ;point to next byte 
SHT020 ;do 16 times 
NC,SHT030 ;go if 0 
A,UX-1 6l :get byte 
80H ;set ms bit 
UX-16},A ;store 
BC ;get count 
SHT010 ;go if not done 

;end 

The above program is one way to accomplish the shift. Try yours, if you did one ··· it may be shorter! The 
only trick here is that each RR (IX) shifts one bit to the right. The C.arryfrom the previous shift goes into 
bit 7 on the shift, and a new Carry from bit 0 replaces the previous Carry. This new Carry will go into bit 7 
of the next memory location. 

The inner loop shifts 16 locations one bit. The outer loop does 4 iterations of one bit. 

Try the program (or yours). It should shift the data in 7900H through 790FH one hex digit position to 
the right (use the ZT display mode). 
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} 9 Shifting Data 

To Sum It All Up 
• Rotates rotate either the A register ( RLCA, RLA, R RCA. R RA) or any register or memory location 

(RLC, R L, R RC, RR) one bit to the right or left 

• Rotates recirculate the bits back into the register or memory location from the other end 

• Rotates may operate through the Carry flag (9-bit rotate) or without going through the Carry 

• The Carry nag is always set to the state of the bit shifted out on a rotate 

• The "any register" rotates also set the Z, S, and P / V flags 

• BCD numbers are made up of binary-coded-decimal values in groups of 4 bits 

• A BCD digit represents decimal O through 9 by values of 0000 through 1001 

• BCD digits of 1010 through I I 11 are invalid 

• RRD and RLD are "BCD shifts" that move 4 bits at a time 

RLD, RRD (Appendix V) 
DAA (Appendix V) 
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Lesson 20 
More Shifting and Multiplication 

Load LESS20 from cassette. 

There are several other types of shifts in the Z-80 that are used frequently. One of these is the "logical" 
shift, and the second is the "arithmetic" shift. 

Logical Shifts 
Logical shifts are different from rotates because they do not recirculate the data in the register or 
memory location. Logical shifts shift in zeroes in place of the data from the other end of the register or 
memory location as shown in Figure LESS20- l. 

7 

7 

0 

REGISTER OR 
MEMORY LOCATION 

0 

0 

Figure LESS20-1. Logical Shifts 

0 
SLA 

SHl"LE" 
ARITHMETIC 

SRL 
SHl"RIGHT 

LOGICAL 

The two logical shifts in the Z-80 are the SRL (Shift Right Logical) and SLA (Shift Left Arithmetic). 
Even though the second mnemonic has an "arithmetic" modifier it is still a logical shift! 

As in the case of the rotates, any bit leaving the register or memory location as a result of the shift goes 
into the Carry flag. The flags are set as in the case of the "any register" rotates, with C, Z, P / V, and S 
being affected. 

The SRL instruction shifts one bit right, filling a zero into bit 7. If we had 01110001 in the B register, 
then a 

SRL B ;shift B right 

would result in a 00111000 with the Carry flag set to I. Eight SR Ls would result in 00000000, clearing the 
B register. 

The SLA instruction works exactly the same way in reverse. If we had 01110001 in B, then 

SLA B ;shift B left 

would result in 111000 I 0, with the Carry flag set to 0. 

SRL and SRA can be used with any register and with (HL) or indexed addressing modes. 

Multiplying and Dividing By Shifting 
Every time a logical shift left is done, the original value in the register or memory is multiplied by 2: 

+ 
+ 
+ 

00110010 
01100100 
11001000 
10010000 

Original=50 
After SRL=lOO 
After SRL=200 (absolute) 
After SRL= 144 (invalid) 
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20 !'1ore Shifting and Multiplication 

Every time a logical shift right is done, the original value is divided by 2: 

00JJO0IO Original=50 
+ 00011001 After SRA=25 
+ 00001100 After SRA=l2 
+ 00000110 After SRA=6 
+ 0000001 I After SRA=3 

You can see from the above examples that there is a limit to the number of multiplies by shifting that can 
be done. This limit is the size of the register or memory location itself. After a certain point, the results 
ai•e invalid. 

Another interesting point is that a divide by shifting to the right results in a loss of the remainder. 
Actually, a divide by shifting puts the remainder (0 or l) into the Carry flag, but it is lost on the next shift. 

Multiplying and dividing by shifting., then. can be done for small values and with an eye on the 
limitations of this type of processing. 

Multiplication by powers of two can also be done by adding either 8-bit values or 16-bit values to 
themselves, as we saw in an earlier lesson. 

Software Multiplies 
What about multiplication by other than powers of two? Suppose we wanted to multiply any 8-bit 
number by any other 8-bit number? There is no built-in "hardware" multiply or divide in the Z-80. We've 
got to do everything in software! This is not an unusual situation for microcomputers, by the way. 

The following program (at the start of the Lesson File) shows one way of implementing an "8 by 8" 
multiply: 

100 : ......................................... "" ......................................... $ ........................... . 

1 10 ;• EIGHT BY EIGHT MULTIPLY, UNSIGNED 

120 :• 
130 ;• 

140 :• 

ENTRY: E=MULTIPLICAND 

A=MULTIPLIER 

EXIT: (HL)=RESULT 

1 50 ;••·············· .................................................................................. . 

160 MULTLY LO 

170 LO 
180 LO 

190 MUL010 ADO 

200 SLA 

210 JR 
220 ADD 

230 MUL020 DJNZ 

240 RET 

D,O 

a.a 
HL,O 

HL,HL 

A 

NC.MUL020 

HL,DE 

MUL010 

:multiplicand now in DE 
;for 8 multiplier bits 
;initialize result 

;shift result 
;shift mult'ier left 
;go if C=0 
;add in mult'cand 
;go if not 8 times 

;return 

This multiply is in the form of a subroutine in case you want to use it in some of your own assembly­
language programs. 

MULTLY is entered with the multiplicand in E and the multiplier in A. In case you've forgotten, the 
multiplicand is the number on the top and the multiplier is the number on the bottom in a multiply. It 
really doesn't make any difference which number you put where in this case, however. 

At the end of the multiply, HL holds the result (the product). 

Assemble the program. 
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Execute the program after first using the ZR command to load the E and A registers with two numbers 
to multiply. Now an important point: Breakpoint the RET instruction by using the ZB command as in 

ZB XXXX (BREAKPOINTS THE RET AT LOCATION XXXX) 

If you don't breakpoint the RET, the RET will try to execute and cause either a 'NOT AN INSTRUC­
TION' or 'JP, REF, OR STK OUT OF OBJECT error. 

Record the numbers and results for these number combinations: 

1) 50H TIMES 02H (80 • 2) 

2) OAH TIMES 14H (10 • 20) 

3) OOH TIMES OOH (0 • 0) 

4) 7FH TIMES 02H ( 127 • 2) 

5) 80H TIMES 02H (128 • 2) 

6) FFH TIMES FFH (255 • 255) 

Got them? Let's do some analysis of the multiply. We're multiplying an 8-bit number by an 8-bit number. 
How large will the result be? That's fairly easy to figure out. 

We know that in 8 bits we can hold O through 255 if the numbers are "unsigned" or absolute. The result of 
the multiply can therefore be anything from O (0 * 0) through 65,025 (255 * 255). 

Since a 16-bit number can hold O through 65,535, it looks as if we should have no trouble fitting the 
quotient in the 16-bit HL register pair. Here is what you should have seen after the multiplies: 

1 ) 50H TIMES 02H=OOAOH (80 • 2)= 1 60 

2) OAH TIMES 1 4H=OOC8H ( 1 0 • 20}=200 

3) OOH TIMES OOH=OOOOH (0 • 0)=0 

4) 7FH TIMES 02H=OOFEH ( 1 27 • 2)=254 

5) 80H TIMES 02H=O 1 OOH { 1 28 • 2)=256 

6) FFH TIMES FFH=FEO 1 H (255 • 255)=65,025 

It appears that the multiply works, but how is it done? 

This multiply, and many software multiplies, emulate paper and pencil multiplies. Suppose that we take 
the case of lO times 20. We can do binary multiplication with paper and pencil by the process shown in 
Figure LESS20-2. 00001010 10 

00010100 " ~ METHOD 1 
00000000 

00000000 
00001010 

00000000 
00001010 

00000000 
00000000 

00000000 
000000011001000 C 200 

00001010" 10 
00010100 ° }3Q 
00000000 

00000000 
00000000 

00001010 
00000000 

00001010 
00000000 

00000000 

000000011001000 · 200 

METHOD 2 
(CLOSE TO A 

"SOFTWARE" MULTIPLY) 

Figure LESS20~2. Paper and Pencil Binary Multiply 
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20 More Shifting and Multiplicat_i_o_n ______________ _ 

All we're really doing i.n the process is shifting over to the next "bit position" and adding in either zeroes, 
or the multiplicand. depending upon whether the multiplier bit was a. 0 or J. 

In MU lTLY, we're shifting the result in H L to the left instead of shifting the muhiplicand as we add it in. 
The shift is performed by the m.ethod of adding, which shifts H Lone bit. position left. The next multiplier 
bit is shifted out from the left of A by an SLA; it sets the Carry. 

If the ('.arry is set after the shift of A, the multiplicand is added to the ·'partial'' result. lf the Carry is not 
set, nothing is added. 

If you can't see how this works, and it is hard to visualize, try this: Play computer with paper and pencil. 
Write down all of the registers, and then go through each instruction. You should wind up with 
something like Figure LESS20-3. 

0 

0 

0 

0 

() 

0 

1!1~20,.1 

A/ ~.~ Ht 

Ct@l01ofo) 8 20 0 
00010100 0 

!l 
7 0 

00101000 0 
6 0 

01010000 
5 0 

10100000 0 
4 0 

01000000 20 
3 <10 

1(.1000000 
2 80 

00000000 10() 

@ 
0001)0000 I !l 

FINAL 
RESULT 

Figure LESS20~3. Playing Computer 

Now execute MULTLY again and compare what you've written down with the display at slow speed. 

A similar type of multiply can be implemented for" l 6 by 8" operands, or even" 16 by l 6" operands. The 
product will never be larger than the total number of bits in both operands, For example, a 16 by 4 
multiply will yield a 20-bit product, maximum. 

A 16 by 8 Multiply 
Here's another method for a 16 by 8 multiply. Let's say that one operand is in location 7900 Hand 790 l H 
in standard Z-80 16-bit format and that the other operand is in location 7902H in 8 bits. We want to put 
the product in 7903H on. We'll use the MUlTLY subroutine to do the multiply. Can you do it? Think 
about it for a second, and we'll give you the answer. 

One way to do it is to use the fact that any 16-bit number of the form hex XXYYH is really XX*256+YY. 
If we call the two bytes of the first number AB and the byte of the second number C, then we have 
(A*256+B)*C. This is equal to A*C*256 + C*B, which is the same as 

A•C•256=A•C shifted left 8 bits 
+C•B 

All we have to do is separate multiplies of A*C and C*B and do some shifting and addition and we'll 
have the result (note: do not delete lines I 00 -- 240!): 
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More Shifting and Multiplication 20 
250 : 1 6 BY 8 MULTIPLY BY PARTIAL PRODUCTS 

260 MUL16 LO A,(7902H) ;get C 
270 LO E,A ;in E 
280 LO A,(7901 H) ;get A 
290 CALL MULTLY ;A•C 
300 PUSH HL ;save 
310 LO A,(7900H) ;get 8 
320 LO E,A ;in E 
330 LO A,(7902H) ;get C 
340 CALL MULTLY ;C•B 
350 LO A,L ;Is byte 
360 LO C7905H),A ;store 
370 LO L,H ;2nd byte 
380 LO H,O ;now in HL 
390 POP BC ;get first result 
400 ADD HL,BC ;find 1st, 2nd byte 
410 LO A,L ;get next byte 
420 LO C7904H),A ;store next byte 
430 LO A,H ;get ms byte 
440 LO C7903H),A ;store 
450 END ;end 

Assemble and execute the program using ZX MMMM, where MMMM is the execution address 
corresponding to location MULl6. Try different operands in 7900H/ I Hand 7902H. You'll see the result 
as a 3-byte number in 7903H through 7905H. The number will not be in standard format, but will be 
ordered from most significant byte to least significant. 

We'll leave it up to you to go through the program in detail. 

This technique can be used for 16 by 16 multiplies or even greater, but does get fairly tedious for a larger 
number of bytes. Floating-point representation is generally used for large numbers, as in BASIC 
single-precision and double-precision variables. 

Arithmetic Shifts 
We've gotten off on a tangent here discussing multiplies, but we really couldn't do them justice before 
discussing shifts. 

We mentioned another type of shift at the beginning of this lesson called the "arithmetic shift." To see 
how this shift works, enter the following code and assemble: 

460; ARITHMETIC SHIFTS 
470ASHFT LO 
480 LO 
490ASH010 
500 
510 

SRA 
DJNZ 
END 

A,85H 
B,8 
A 

ASH010 

;load A with I 0000 IO I 
;loop count 

;shift A right, arith 
;go if not 8 

;end 

Execute the program at slow speed and watch the contents of the A register. 

What did you see? 

You should have seen the A register change as follows: 
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20 More Shifting and Multiplication 

10000101 

11000010 

11100001 

11110000 

11\11000 

11111100 

11111110 

11111111 

Now change the 85H to 75H and execute. You should see: 

01110101 

00111010 

00011101 

00001110 

00000111 

00000011 

00000001 

00000000 

It appears that in the first case the shift "extends" ones, while in the next case zeroes are "extended." 
Why'! 

The arithmetic shift is used for signed values. When the most significant bit is a sign (or even if it isn't), 
the SRA will extend the msb to the right as the number is shifted. For positive numbers (sign bit=O), this 
works the same as an SRL, extending zeroes. For negative numbers, though, the result is different. 

Looking back on the shift of 85H, let's take the two's complement of the result and see what we get: 

10000101 -123 

11000010 ·62 

11100001 -31 

11110000 -16 

11111000 -8 

11111100 -4 

11111110 -2 

11111t11 -1 

Aha! Looks like the SRA can be used to "sign extend"the result. By sign extend we mean that the result 
will be shifted right with the sign intact. If we used just an S RL shift, we'd have an invalid result as in 

10000101 ., 23 

01000010 +66 

Again, as in the case of an SRL, we lose a portion of the result on the shift if the number is odd. The -123 
became a -62, for example. The SRA is handy, though, for those cases where we want to shift a negative 
number and do it with the sign properly adjusted. 

To Sum It All Up 
To recap this lesson: 

• The SR Land SLA are "logical" shifts that shift a register or memory location to the right or left one 
bit at a time 

• Logical shifts set the C Z, S, and P / V flag 

• Logical shifts to the right divide by 2 and to the left multiply by 2 

• Software multiplies in the Z-80 emulate paper and pencil binary multiplication 
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• The product of binary multiplies will not exceed the total number of bits in both operands 

• The SRA arithmetic shift sign extends the register or memory location contents as the shift is done 

For Further Study 
Multiple--precision operations (Lesson l l) 





Lesson 21 
Bit Operations and Divides 

Load LESS2 I from cassette. 

In this lesson we'll look at another way of manipulating data at the bit level. The BIT, SET, and RES 
instructions let us test, set, or reset a bit in a register or memory location. Each of these instructions 
replaces as many as three "8080" instructions that would accomplish the same task. 

The BIT Instruction 
The BIT instruction is used to test the state of any bit in a register or memory location. BIT 7,C, for 
example, willtest bit 7 of the C register. The state of the bit will go into the Z flag. If the bit is a I, the Z 
flag will be set (Z); if the bit is a 0, the Z flag will be reset (NZ). 

As an example, suppose that we wanted to test the state of location 7900H, bit 5, and jump to SET JM P if 
the bit is a I or to RESJMP if the bit is a 0. We could do it by: 

LO 
BIT 

JR 

JR. 

HL,7900H 

5,CHL) 

NZ,SETJMP 

RESJMP 

The equivalent code without the BIT instruction would be: 

LO 
LO 
ANO 

JR 

JR 

The format of the BIT instruction is 

BIT 

HL,7900H 

A,(HL) 

20H 

NZ,SETJMP 

RESJMP 

n,XXXX 

;point to location 
;test bit 
;go if I 
;go if 0 

;point to location 
;get byte 
;test bit 
;go if l 
;go if 0 

where n is the bit number to be tested. Bit numbers are 7 through 0, as we've seen in other examples, with 
bit 7 on the left and O on the right. 

The addressing modes permitted in the BIT instructions are: 

• Register addressing, as in BIT 4,H 
• HL register indirect, as in BIT 5,(HL) 
• Indexed addressing, as in BIT 4,(IX+23) or BIT 5,(IY-24) 

The SET Instruction 
The SET instruction sets a given bit in a register or memory location. To set bit I of the 23rd byte from a 
location pointed to by IY, for example, you'd have 

SET 1,(IY+23) ;set bit l 

The SET replaces as many as three instructions. Without the SET, you'd have something like: 

LO 
OR 

LO 

A,UY+23) 

2 

UY+23),A 

;get byte 
;set bit I 
;restore byte with I set 

Another advantage of the BIT, SET, and RES is that you don't need to use a register as we did here to 
manipulate the bit. 

Addressing modes are the same as BIT, so you can SET bits in registers or memory locations by 
instructions such as 
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SET 

SET 

SET 

Bit Operations and Divides 2 } 
3,L 

4,CHL) 

6,UX-6) 

RES Instruction 

;set bit 3 of L 
;set bit 4 of (HL) 
;set bit 6 of (l X-6) 

The RES instruction resets a bit in a register or memory location. To reset bit 7 of the location pointed to 
by H L, you'd have 

RES 7,(HU ;reset bit 7 

The equivalent code without the RES would be 

LO 

ANO 

LO 

A,(HU 

7FH 

(HU.A 

;get byte 
;reset bit 7 
;store byte 

The addressing modes are the same as SET, so you can have instructions like 

RES 
RES 
RES 

O,L 

3,(HL) 

2,<IX+6) 

;set bit O of L 
;set bit 3 of (HL) 
;set bit 2 of (IX +6) 

Flags for the BIT, SET, and RES Instructions 
The SET and RES instructions don't affect any Flags. The BIT instruction sets the Z flag to the result of 
the test and leaves the Carry flag unchanged. 

\ 

A Divide Using SET, RES 
To show you how these instructions work, we'll use a divide subroutine to complement the multiply 
subroutine in the previous lesson. 

Enter the following code, or use the Lesson File: 

1 00 ................... ., ..................................................................................... . 

1 10 ;• DIVIDE 1 6 BY 8 SUBROUTINE, UNSIGNED 

1 20 :• ENTRY: (HL)= 1 6-BIT DIVIDEND 

1 30 :• (C)=S-BIT DIVISOR 

140 :• 

1 50 :• 

EXIT: (HL>==QUOTIENT 

CA)=REMAINDER 

160 ;••••••••••••••••••••••••••••••••••••••••••••t1••••••0•••••••••••••••••••••••••••••••••••••••• 
170 DIVIDE XOR A ;clear A 
180 LO B, 16 ; 16 iterations 
190 DIV010 ADO HL,HL ;shift residue left 
200 ADC A,A ;shift A with carry 
210 SET O,L ;Q=l 
220 SUB C ;subtract divisor 
230 JR NC,OIV020 ;go if not negative 
240 ADD A,C ;restore 
250 RES O,L ;reset Q to 0 
260DIV020 DJNZ DIVOtO ;do 16 times 
270 RET ;return 

------·-----------------------
Assemble the program. DIVIDE divides a 16-bit number by an 8-bit number. Use the ZR capability of 
ALT to set up the H Land C registers to different operands. Use the ZB command to breakpoint at the 
RET instruction so that you can look at the results. 

136 



Bit Operations and Divides 2 } 
Execute DIVIDE and observe the results. Some typical values might be these: 

FFFFH/01 H=FFFFH 
FOOOH/ 20H=0780H 
03E8H/75H=0008H 
0003H/ 30H=OOOOH 

OOH 
OOH 
40H 
03H 

65,535 / I =65,535 remainder 0 
61440 / 32= 1920 remainder 0 
l000/ 117=8 remainder 64 
3 I 48=0 remainder 3 

How does the DIVIDE work? Divides are a little more cumbersome than multiplies. The general 
method used in divides is "restoring division." 

A paper and pencil division is shown in Figure LESS2 l-l. The divisor (the number that goes "into" the 
dividend) is tried with the first digit of the dividend. If this doesn't "go," the next two digits of the 
dividend are tried. If this doesn't work, the next three digits of the dividend are tried. 

43 , 23915 ? 

0000001000101100 QUOTIENT OF 556 

00101011 !0101110101101011 
-0101011 

00000111011 
-00101011 

0001000001 
-00101011 

-- --- ----·-·---
000101100 
-00101011 ________ ,., ___ _ 
0000000111 REMAINDER OF 7 

Figure LESS21-1. Paper and Pencil Binary Division 

If the divisor does "go," it is subtracted from the dividend. The next digit is then brought down with the 
result, and the process is repeated. 

What we are doing in our heads is to make the determination that the divisor will "go" into the next 
dividend "residue;' In some cases we actually try a quotient digit and find that the result is too large to be 
subtracted from the residue; it would give a negative number. In these cases we "restore" the original 
residue and try again. 

When implemented in a software divide, the program always subtracts the divisor from the residue, as 
shown in Figure LESS21-2. If the result of the subtraction is negative, the subtraction won't "go?' In this 
case the residue is "restored" by adding back the divisor, and the quotient (result) bit is set to 0. If the 
subtraction does go, the quotient bit is set to l and no "restore" is done. 

____________________________________ _. __ 
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21 Bit Operations and Divides 

INITIAL REGISTER SETUP (23911:i/43) 

!o o o o o o o olo 1 o t 1 1 o 1:0 1 1 o 1 o 1 1! 

jo o 1 o 1 o 1 1j 

g_ 

AFTER FIRST SHIFT 

lo o o o a o o 0!1 o 1 1 1 o , a:, 1 o , o 1 

loo 1 o 1 o 1 1! 

AF'TER FIRST SUBTRACT 

FIRST Q BIT 
SET TO 1-
MAY BE RESET 

t 

C ~INDICATES NEGATIVE RESULT-RESTORE MUST BE DONE 

GJ 11 , o , o , o , 1 1 o 1 1 1 o 1 o: 1 1 o , o , 1 i 1 I 

(o o 1 o 1 o 1 1j 

AFTER RESTORE 

lo o o o o o o 

"RESIDUE" RESTORED 

~ 
011 0 1 1 1 0 1 0:1 1 0 1 0 1 

lo o 1 o 1 o , ,, 

Figure LESS21-2. Software Divide 

Q BIT RESET 
TOO 

do} 

The D l V l DE program shown above uses the H L register pair to hold the dividend, as shown in Figure 
LESS2 l-2. The A register can be considered an "extension" of the dividend, as the dividend residue is 
shifted into the A. register for subtracts. The C register holds the divisor. and it is subtracted from A. 

There will be a maximum of 16 bits in the quotient. as in FFFFH divided by I. Therefore there will be 16 
subtracts, each one generating a quotient bit of O or I. 

The quotient bit goes into the least significant bit of the L register. It is SET to al before the subtract and 
RE Set if the subtract doesn't go. The quotient bit can be put into this bit because the HL register leaves a 
vacated bit as it is shifted left into the A register. 

The loop from DI VO! 0 in DIVIDE is the main loop. It first AD Os H Land H L to shift part of the residue 
and any accumulated quotient bits to the lefL This add leaves a bit in the carry from the add which is 
really the highest order bit from H L. This bit is shifted into the A register as A. is shifted by the A DC A,A. 

Next, the Q bit is set to I. 

The divisor in C is then subtracted from the residue in A. If this residue "goes negative;• the Carry flag 
will be set. In this case C is added back to the residue and the Q bit is RESet to 0. 

The DJNZ loops back to the next subtract for the 16 iterations of DIVIDE. 

On exit, A and HL have been shifted 16 times and 16 subtracts with possible restores have been done. 
The quotient is in HL. and the remainder is in A. 

Now that you understand how the DIVIDE works, execute it again at slow speed and pay close attention 
to the results after each subtract in A. the shifting of A and H Land the SET and RES of the quotient 
bits. 
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Bit Operations and Divides 2 } 
DIVIDE is a typical divide in software. Like MULTLY, it is an "unsigned" divide that does not work 
with two's complement numbers. 

There is one case in the DIVIDE which you should be aware of. This is division by zero. If you divide 
FFFFH by 01 H (65,535 / I), you11 get a quotient of FFFFH, which is correct. What do you get when you 
try dividing FFFFH by OOH? Try it and see. What about 03F8H by OOH? 

Both of these cases and any division by O produces FFFFH, which is incorrect. Because of this, using a 0 
divisor is not allowed in divides and is not allowed in most other mathematics operations. 

Dividing by Larger Numbers 
The DIVIDE above is about the minimum-sized divide that is still useful. By proper "scaling" you can 
use DIVIDE to get fairly good accuracy. For example, if you wanted to add l / 2 + l / 4 + l / 8, and so forth, 
you could do the divide as 10000/ 2 + 10000/ 4 + 10000/ 8 ... The resulting quotient would be "scaled up" 
to l 0,000 times the actual result, and you could find the true result by putting a decimal point four places 
in front of the computed result: 

10000/2= 

10000/4= 

10000/8= 

10000/16= 

10000/32= 

10000/64= 

10000/128= 

5000 
2500 

1250 

625 

312 

156 

78 

9921 => .9921 actual is .9921875 

As in the case of the multiply, working with divides for larger numbers becomes tedious. It's relatively 
easy to program a 32-bit by 16 divide which would give a 32-bit maximum product with a remainder of 
16 bits and you might want to try this as an exercise. Use a register pair such as BC or DE and put half of 
the dividend in HL at a time. Use the other register pair to collect the 16 bits of the quotient. 

Doing "Signed" Multiplies and Divides 
In this lesson and the last we've discussed unsigned multiplies and divides. How would you do "signed" 
multiplies and divides? 

Although it's possible to do them directly with special multiplies and divides, the easiest way is to first 
convert the operands to absolute values, do the multiply or divide, and then change back the result to the 
proper sign. An example is shown for DIVIDE (don't delete the DIVIDE program when running this): 
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280 : SIGNED DIVIDE 

290SOIV LO HL,(7900H) 

300 LO A,(7902H) 

310 LO C,A 

320 LO A.H 

330 XOR C 

340 PUSH AF 

350 BIT 7,H 

360 JR Z,S01010 

370 CALL NEGHL 

380501010 LO A,C 

390 BIT 7,A 

400 JR z.s01020 

410 NEG 

420S01020 LO C,A 

430 CALL DIVIDE 

440 POP BC 

450 BIT 7,B 

460 JR Z,S01030 

470 CALL NEGHL 

480 NEG 

490501030 LD (7903H),HL 

500 LO (7905H),A 

510 JR DONE 

520NEGHL EX DE,HL 

530 LO HL,O 

540 OR A 

550 SBC HL,DE 

560 RET 

570D0NE END 

----------------------~----~-

;get dividend 
:get divisor 
;in C 
;sign of dividend 
;find result sign 
;save result sign 
;test sign of dividend 
;go if+ 
;find absolute value 
;get divisor 
;test sign 
;go if+ 
;find absolute value 
:back to C 
;do unsigned divide 
;get sign of result 
;test 
;go if+ 
;negate HL to absolute 
;negate A 
;store quotient 
;store remainder 
;done 
;HL now in DE 
;clear HL 
;clear carry 
;absolute value of HL 
;return 
;end 

To see how this works, put a dividend in 7900 Hand 790 I H and a divisor in 7902 H. The quotient is stored 
in 7903H and 7904H and the remainder in 7905H. Execute from "SDIV." 

The absolute value of HL is taken by clearing it to O and then subtracting the original value of HL from 0. 
The absolute value of A is taken by a NEGate instruction. 

The trick here is to get the sign of the result. The sign of a multiply or a divide is the exclusive OR of the 
two operands: 

+ TIMES A+=+ 

+TIMESA-=­

-TIMES A-=+ 

(same for divides) 

OXORO=O 

0 XOR 1 = 1 

1 XOR 1 = 0 

The exclusive OR is taken and the result saved in the stack. Bit 7 of the result value is the sign, 0 ( +) or I 
(-). After the operands have been converted to their absolute values, the sign result is POPped from the 
stack and used to convert the result of the divide to the proper sign. 

The operands initially should be 16-bit or 8-bit two's complement numbers. The results will also be two's 
complement numbers. Can you detect a case in which the DIVIDE will not work properly? 

Did you find the case? If -32768 (8000H) is divided by-I (FFH), the result of 32,768 is too large to be held 
in 16 bits. The largest positive 16-bit number is 32,767, or 7FFFH. 
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To Sum It All Up 

To review what we've learned in this lesson: 

• The BIT instruction tests a single bit in a register or memory byte and sets the Z flag to the bit state 

• The SET and RES set or reset a single bit, respectively 

• Flags are not affected by the SET or RES, but are affected by the BIT 

• Software divides generally use a "restoring" division technique of shift, subtract, and possible restore 

• Numbers can be "scaled up" for multiplies and divides 

• Signed multiplies and divides may be done by converting to absolute values, performing the opera­
tion, and converting the result to proper sign 

• Exclusive ORing two operands for a multiply or divide will give the proper result sign in the sign bit of 
the result of the XOR 

For Further Study 
Flag settings for BIT (Appendix V) 
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Load LESS22 from cassette. 

Lesson 22 
Bits and Pieces 

Up to this point we've covered most of the major instructions in the Z-80. The preceding lessons have 
described instructions that will be used in 95% of your assembly-language code. ln this lesson we'll 
round out the instruction set by briefly mentioning some of the less frequently used instructions. 

The Decimal Instructions 
In Lesson 19 we briefly discussed binary-coded-decimal (bed) instructions. You may want to go back 
and review that material now, because we're going to discuss an instruction that makes bed additions 
and subtractions possible, the DAA, or Decimal Adjust Accumulator. 

Enter the following program, or use the source code from the Lesson File: 

100; BCD OPERATIONS 
110 BCDST LO IX,79OBH ;point to result 
120 LO HL.79O3H ;point to BCD op I 
130 LO IY,79O7H ;point to BCD op 2 
140 OR A ;clear Carry 
150 LO B,4 ,loop count 
160 BCDO1O LO A,(HU ;get ls byte 
170 ADC A,CIY) ;get ls res, binary 
180 OAA ;decimal adjust 
190 LO 0X),A ;store bed 
200 DEC IX ;op l pointer 
210 DEC IY ;op 2 pointer 
220 DEC HL ;result pointer 
230 OJNZ BCDO1O ;go for next 
240 END ;end 

-----------------·--·----·------· 

This program takes two 4-byte operands and adds them together in a multiple-precision operation. (You 
may want to review Lesson 11, which talked about multiple precision.) The first 4-byte operand is 
located in locations 7900H through 7903H. The second is located in locations 7904H through 7907H. 
The bed result is stored in locations 7908H through 790BH. 

All operands are treated as 32-bit numbers, with the most significant byte on the left and the least 
significant byte on the right. 

Assemble the program. Now store these values in the operands by using ZM: 

Operand I: 12H, 34H, 56H, 78H 
Operand 2: 5(?H. 78H, 91 H, 23H 

Execute the program and look at the results. 

What did you find? The result of a binary add is predictable and not too hard to figure out, even though 
we are working with 32-bit numbers: 

12345678H 
+56789123H 

68ACE79BH 

143 



2 2 Bits and Pieces 

What does this number represent in binary? Some ungodly number, no doubt ... That's not the point 
-look at the result of the bed add in locations 7908H through 790BH. 

The result of the bed add was: 

12345678H 
+156789123H 

69134801H 

In fact, the bed add enables us to treat the two operands as if they were decimal numbers, and not binary. 
The result was the same as if we had added the two numbers with paper and pencil. 

The decimal adjust accumulator (DAA) takes each binary result and converts it to a bed-format number 
by adding 6 to each 4 bits, under certain conditions. It adjusts the result from a binary result to a bed 
result, eliminating the invalid bed 4-bit groups of lO 10, 10 ll, ll 00, I lO l, ll 10, and l ll l. 

Try some other operands, and you'll see the difference. Of course, you must start off with valid BCD 
numbers in both of the operands, numbers that have the valid bed digits of 0000 (0) through 1001 (9) in 
each digit position. 

The DAA automatically handles "carries" also, so that you can work with "multiple-precision" bed 
operands, just as you did with multiple-precision binary operands. 

The DAA will also work in similar fashion for subtracts. The DAA should follow every 8-bit subtract 
and will adjust the operand to a bed result. We'll leave it up to you to reassemble with "SBCs" in place of 
the ADCs. 

BCD numbers take more space, as you can see from the results. Conversions between ASCII and bed are 
somewhat simpler, however. To convert from an ASCII character of 30H through 39H, representing "0" 
through "9:' all you have to do is something like: 

CONVRT CALL 

SUB 

RRD 

GETCHR 
30H 

;get character 
;convert to bed O - 9 
;store in next 4 bits 

The SUB above converts the ASCII 30H - 39H to OOH - 09H, and the RRD instruction stores the 
4-bit bed value into the next position in a buffer. See, there was a use for RRD after all! 

Using the Second Register Set 
We haven't used any of the second set of registers that we talked about early in this course. As you'll 
recall, AF, BC, DE, and HL have a duplicate pair of registers, designated AF', BC', DE', and HL'. Only 
one set can be current at any time. 

On system startup, one set is selected. To switch to the other set, two instructions are used - EX AF.AF' 
and EXX. 

EX AF,AF' switches to the second AF pair. EXX switches to the second pair of BC, DE, and HL. 

To see how they work, delete lines I 00 - 240 and use the Lesson File: 
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250 ; EX AF.AF' AND EXX 

260 EXTST LO 

270 LO 

280 LO 

290 LO 

300 EX 

310 EXX 

320 LO 

330 LO 

340 LO 

350 LO 

360 EX 

370 EXX 

380 ENO 

A,1 

BC,1234H 

OE,5678H 

HL,9ABCH 

AF,AF' 

A,2 

BC,-1 

OE,-2 

HL,-3 

AF,AF' 

;typical args to regs 

;switch to alternate 
;switch remainder 
;typical args to primes 

;switch back 

Assemble this program and execute slowly. You'll first see A through L loaded with typical values. Next 
the EX AF,AF' and EXX instructions are executed. At this point, the register display will show a 
different set of values, whatever is in the alternate set. Note that using the EX AF,AF' and EXX didn't 
move data, it simply switched to the second set. The next group ofloads loads this second set, and you'll 
see the data displayed on the screen. 

Finally, the registers are switched back again, and you'll see the data from the first load. 

When should the second set of registers be used? Anytime you'd like. They are there for your 
convenience. About the only problem in using them is that you may get confused about which set is 
being used if you do too many switches. Many times using one set is sufficient. 

The NOP Instruction 
What is a NOP? A NOP is just what it says, a "no operation." A NOP is used to delete instructions 
without the need to reassemble by substituting a NOP opcode (OOH) for all bytes of the instruction. 

Suppose that you had the following code: 

LO 

INC 

INC 

A,UX+ 1) 

IX 

IX 

;get byte 
;bump pointer 
;bump again 

and you found out that the second INC IX was not needed. You could effectively delete the INC IX 
without reassembling by replacing the DDH, 23H bytes of the INC IX by NOP codes ofOOH, OOH. The 
NOP does not affect any registers or any condition code settings. 

HALT Instructions 
The HALT instruction is used on other Z-80 systems, but should never be used on the Model land 
Model III. The reason for this is that HALT is "hardwired"from the microprocessor to cause the system 
to reset. It will not assemble on the ALT, so you won't have to worry about it here. 

Interrupt-Related Instructions 
DI and EI disable and enable "interrupts" respectively. You really won't need either of these in the 
programs we're doing here (ALT will not assemble them). Occasionally you'll need to use DI and EI in 
intermediate or advanced assembly-language programming to turn the interrupts off for operations that 
are "timed" in software, such as cassette operations and timing loops. 

There are three interrupt "mode" instructions which you will not need to use unless you are doing 
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adva.nced programming applications, and even then m.ost of the interrupt modes arc not used in 1he 
Model I and UL IMO. lM Land IM 2 will not assemble on ALT. 

IN and OUT Instructions 
IN and OUT instructions are used to read and write data to an internal or ex.ternal l / 0 such as 
the cassette tape logic or RS--232-·C interface. You will not need to use these instructions until you're 
doing intermediate or advanced applications and, in many cases, not even then. 

The IN and OUT instructions operate with the A and move a hyte of darn to or from an 
input/ output "port" whose address is 0 through 255. There are some port addresses which are dedicated 
to system functions, such as port OFFH, which is dedicated to cassette tape operations, 

There are a number of input/ output "block" instructions which help to move blocks of data on an input 
or output. Operation is somewhat similar to the block move instructions we discussed earlier in these 
lessons. Chances are you'll never use any of these, even in advanced programming applications. For 
reference, the mnemonics are OlJTI, OTIR, OUTD, OTDR, lNl, lNIR, IND, and INDR None will 
assemble on ALT. 

RST Instructions 
The RSTinstruction includes 8 separate formats: RST OOH, RS'l 08H. RST IOH, RST 18H, RST 20H. 
RST 28H, RST 30H, and RST 38H. RSToperation is identical to the CALL unconditional. It jumps to 
location OOH, OSH, ... , or 38H after first pushing !he return address in the stack. 

The key to the RST is that it is a single byte CALL of the format 11 rrT ! i l, where TTT is a code of 000 
through ll I. The address for the jump is found by TTT:i<8. If the code were HH, for example, the RST 
would be lI 101111, or a RST 28H (RST 40). 

The RST is used all the time in the Model land m BASIC interpreter, as it makes use of subroutines in 
the "page 0" (locations 0 through 255) part of memory. RST is only good for CALLing locations OOH, 
08H, etc., and for that reason it will be of no use to us here in A Lr and very little use in your other 
programs, unless you are calling some of the BASIC interpreter ROM subroutines. 

RST will not assemble on A1T 

Exchange (SP) Instructions 
We haven't discussed three instructions which work with the "top of stack." These are EX (SP),H L; EX 
(SP),IX; and EX (SP),IY. These instructions work like this: The SP points to the last byte stored. The 
EX takes the last two bytes stored in the stack (SP) and (SP+ I) and swaps them with the contents of 
either HL, IX, or IY: 

The instructions are not used for any specific purpose except to enable you to get at stack data without 
too much manipulation. All will assemble and execute on ALT. 

What Do You Do With All the Instructions? 
You've covered a Jot of ground in the past 22 lessons, and there are a lot of instructions that you have at 
your command. After programming for a while, you'll come to know them intimately and treat them as 
old friends. Remember one guiding rule in working with the instruction set: There is not necessarily a 
right way to do things. Many times the same program can literally be implemented hundreds of different 
ways, Feel free to experiment and try new approaches. You can't go too far wrong. Assembly language is 
so fast that things will still move swiftly, 
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To Sum It All Up 

To review what we've learned here: 

@ The DAA does a decimal adjust of the A after an add or subtract 

• The second register set may be activated by EX AF,AF' and EXX; the former selects AF', and the 
latter BC', DE', and HL' 

• NOP is a "do nothing" instruction primarily used for patching 

• The HALT should not be used on Model i/ Ill systems 

• RST is a special one-byte CALL that is not used unless you are CAL Ling ROM subroutines in the 
BASIC interpreter 

For Further Study 
DAA, NOP, and RST Flags (Appendix V) 
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Lesson 23 
Interfacing to DASI C - Linkages 

Load LESS23 from cassette. 

In previous lessons we've really presented all of the instruction set of the Z-80 microprocessor used on 
the Model I and Model III. In this lesson we'll assume that you are now an expert on the instruction set 
(or will be after a mite more study), and we11 concentrate on practical uses of assembly language. 

One of the best ways to learn assembly language is to interface it with BASIC in short, high-speed 
subroutines that complement the flexibility of BASIC. In the next few lessons we'll learn how to do that. 

Memory Map 
First we'll have to get a clear idea of where we can put assembly-language subroutines. Look at Figure 
LESS23-I. It shows the general memory layout of a Model I and Model HI. Some of it may be familiar 
to you. 

00OOH 

3800H 
3FFFH 

7FFFH 
BOOOH 

BFFFH 
COOOH 

FFFFH 

BASIC 
ROM 

0OO0H - 2FFFH(I) 
0000H ·· 37FFH (Ill) 

~_;:;,;:~1/;;::::--:; 
VIDEO MEMORY 

USER 
RAM 

} "" o, "" o'"o" 

KEYBOARD & OTHER ADDRESSES 
3COOH • 3FFFH {1K) 

FIRST 16K RAM 

SECOND 16K RAM 

THIRD 16K RAM 

Figure LESS23~1. Memory Layout 

The BASIC interpreter is "burned into" memory locations OOOOH through 2FFFH (37FFH in the 
Model Ill). This is the "ROM" or "Read Only Memory" portion of the 64K (65,535) bytes of memory 
available to the largest system. 

The memory addresses from 3800H through 3FFFH ar~ "dedicated" to the keyboard and video display. 

The keyboard is actually "hardware logic" that looks like a memory device; it is addressed as memory 
locations 380 I H (row 0), 3802H (row I), on up to 3880H (row 7). 

The video memory occupies memory locations JCOOH through JFFFH. Video memory is very similar 
to normal RAM (random access memory), except for systems that are upper case only. Although some 
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special decoding logic is used, in general these locations can be addressed as normal memory locations. 
To write an ASCII "A" at the upper left-hand corner of the screen, for example, you'd simply do 
something like this: 

LD 

LD 

A,6!5 
(3COOH),A 

;ASCII A 
;store 

Theareafrom4000H (16K)to0FFFFH (64K-l) is available for RAM memory. Of course, if you have a 
16K RAM system the "top of memory" is at 7FFFH, if you have a 32K RAM system the top of memory 
is at 0BFFFH, and if you have a 48K RAM system the top of memory is at 0FFFFH. 

If you are running a pure assembly-language program without using any BASIC interfacing, then you 
will have all of the RAM from 4000H through top of memory for your use. (As a practical matter, 
though, even assembly-language programs will use TRSDOS disk I/ 0 programs at the start of this 
4000H area.) 

If you are running a combination BASIC and assembly-language program, you1l find that parts of the 
RAM area are used as storage by BASIC, by a "resident" section of TRSDOS code, by the BASIC 
program lines, by BASIC variables, arrays, and strings, by system stack, and by the string storage area. 
The general scheme is shown in Figure LESS23-2. 

"TOP OF MEMORY" 

LOW 
MEMORY 

BASIC 
PROGRAM 

TEXT 

SIMPLE VARIABLES 

VARIABLE SIZE 

VARIABLE SIZE 

VARIABLE SIZE 

VARIABLE SIZE 

STRING 
STORAGE 

AREA 
} SET BY CLEAR COMMAND 

i-----------t-SET BY RESPONSE 

MACHINE• 
LANGUAGE 
PROTECTED 

AREA 

TO "MEMORY SIZE" 
PROMPT 

Figure LESS23-2. Using Assembly-Language with BASIC 

The best place to put a short assembly-language program is as close to the top of memory as possible. 
You may protect memory used for assembly-language programs by entering a memory value for the 
MEMORY SIZE? prompt when you first load BASIC. 

If you enter 32767 for the MEMORY SIZE? prompt, for example, you'd protect all of memory from 
32,768 (8000H) on. QASIC would not use any of that area, and you could use it for assembly-language 
programs or for any other operations. 
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Interfacing with BASIC - Linkages 23 
To make it easier for you to generate ALT programs and incorporate them into your BASIC system, 
we11 adopt the following standard for the BASIC interface programs that will be in the following 
lessons: 

Protect the area from 7EOOH on for running the following BASIC/ assembly-language programs. Enter 
32255 in response to the MEMORY SIZE? prompt when loading or reentering BASIC. All of the ALT 
programs will run in memory from location 7E00H up to top of memory. 

Another rule to use: All programs should be loaded into memory with BASIC at the same area in which 
they assemble with ALT. As an example, suppose that you load a program from a Lesson File and the 
object code from the ALT listing starts at location 7E00H. You must load the object code at location 
7EOOH to have it run properly. 

THE ORG (Origin) Command 
All of the programs we've worked with up to this point have started at the end of the text buffer. In other 
words, ALT assembles the object code starting at the first location after the text. However, we can use an 
optional assembler pseudo-op to determine the object start. It is called ORG, for ORiGin, and has the 
format 

ORG XXXXH, 

where XXXXH is a hexadecimal starting location. 

The origin may be anywhere in RAM that you'd like, as long as it is greater than the end of the text area 
and less than the top of memory. If you go out of these limits, ALT will let you know. 

A practical starting point would be somewhere around 7EOOH. This would be out of the text area for 
most small programs and far enough down so that it would not interfere with the "symbol table" and 
other assembler areas. It will also work in a I 6K RAM "minimum" system. 

A map of ALT usage is shown in Figure LESS23-3. It shows you that during an assembly a symbol table 
of labels is "building down" from (top of memory-256), while at the same time the object code and a 
"data map" of the type of instruction is ••building up." The optimum Origin would be just beyond the text 
area to avoid problems with lack of space for the symbol table . 
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LOW 
MEMORY 

ALT 
PROGRAM 

SOURCE 
CODE 
(TEXT} 

OBJECT 
CODE 

VARIABLE I.ENGTH 

_} VARIABLE LENGTH 

256 BYTES UNUSED 

Figure LESS23-3. ALT Memory Usage 

To show you how ORG works, enter the following program, or use the Lesson File: 

1 00 ; SAMPLE USE OF ORG 

1 1 0 START ORG 

120 

130 

140 NEXT 

150CONT 

LO 

JR 

DEFB 
END 

7DEOH 

A,(NEXT) 

CONT 

23 

;assemble at 7DE0H 
;load A 
;jump around data 
;data 
;end 

Assemble the program. Note that the object code starts at location 7DE0H. Jot down the object code or 
do an A LP listing of the object code by assembling with your system printer. (You must not do a "ZX" or 
"ZXS" here, as you will get a 'NOT AN INSTRUCTION' message. Execute directly from the START 
instruction.) 

Now delete lines IOO through 150 and look at the next code on the Lesson file: 

160 START1 

170 

180 

190 NEXT1 

200CONT1 

ORG 

LD 

JR 

DEFB 
END 

7DFOH 

A,(NEXT) 

CONT1 

23 

;assemble at 7DF0H 
;load A 
;jump around data 
;data 
;end 

Assemble this segment. Did you notice any difference in the object code? 
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The assembly at ORG 7DE0H, had 

70E0 

70E3 

70E!5 

3A E!5 70 

18 01 

17 

Relocatability 

START LO A,(NEXTI 

JR CONT 

NEXT OEFB 23 

The address of 7DE5 in the LO instruction refers to the "absolute" location of 7DE5H. 

The assembly at ORG 7DF0H had: 

70F0 

70F3 

70F!5 

3A F!5 70 

1801 

17 

START1 

NEXT1 

LO 

JR 

A,(NEXTO 

CONT 

OEFB 23 

Even though both LO As referred to a location 3 bytes away, they used different addresses. 

Absolute addresses in JPs, LDs, and CALLs, among others, are the reason that object code cannot 
simply be moved to a new location and execute properly. A reassembly must be done. 

Some instructions are "relocatable;' though. An ADD A,C will work anywhere it is located. A relative 
jump also works anywhere: as it contains no absolute address, but simply a displacement from the 
current program counter. (Look at the JR instruction for the two assemblies.) 

Transferring Control to an Assembly-Language Program 
Just how do you transfer control to an assembly-language program from BASIC? There are three steps: 

l. Loading the object code of the assembly-language program into RAM 

2. Defining where the object code is to the BASIC interpreter 

3. Transferring control to the assembly-languge program by a USR call in BASIC 

To show you how this process works, let's use the following program. It is a very simple program to clear 
the video display. (Never mind that there is a CLS command in BASIC; this time we want to do it 
ourselves!) 

Enter the following source code, or use the Lesson File: 

210 ; CLEAR SCREEN PROGRAM 

220 ORG 7EOOH 

230CLRSCN LD B,20H 

240 LD HL,3COOH 

2!50CLR010 LD (HL),B 

260 INC HL 

270 LO A,H 

280 CP 40H 

290 JR NZ,CLR010 

300 RET 
310 END 

;origin 
;blank 
;start of screen 

;store blank 
;bump pointer 
;get ms byte 
;test for end+ l 
;go if not end+ l 

;return to BASIC 
;end 

Assemble the code. You should get an assembly similar to Figure LESS23-4. The important point is that 
the object code should be identical. 
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OSJECT COO£ SHOULD BE THE Iii.II.II/II: IN YOUR PROGRAM 

~:::· ·/ ·--- ·- ~~~~ ;-ci=EAR · ~~~EEN -~:~:;.,-; 
7EOO 002.30 CLRSCN LO S,20H 
7E02 00.240 LO HL,3COOH 
71!:05 002.50 CLRO IO LO iHU.!:3 
7E06 00260 !NC HI.. 
71::07 002.70 LO A,H 
711:08 00.280 Cf> 401-1 
7EOA 00290 JR NZ.Cl.RO 1 0 
711:0C 00300 RET 
71!:00 0031 0 ENO 

Figure LESS23-4. CLRSCN Assembly 

Loading the Object 
ln a Series l Editor/ Assembler we could load the object code into RAM by using casset.te tape or disk. In 
our case, however, we'll use a different technique. We'll load the object by using the POKE statement in 
BASIC. 

In case you're not familiar with the POKE, it works like this: 

'POKE 21 INTO 7EOO 

The POKE statement above stores a decimal 21 into RAM location 32256 decimal, which corresponds 
to 7EOOH. When working with memory addresses over 32,768 (8000H), the "-65536" is necessary 
because of a quirk of the BASIC interpreter. An example would be: 

POKE 47104-65536,21 'POKE 21 INTO 08800 

'l'here's only one problem with the POKE. It works with decimal values, which means that we have to 
convert the hexadecimal values from the assembly-language listing to decimal before we can use the 
POKE! You won't find this too much of a chore, however, as we've given you an equivalence table in 
Appendix UL Also, for every program in these lessons we'll give you the actual decimal values along 
with the hexadecimal values. 

The hexadecimal values for the program (from the listing} are 06H, 20H, 21 H, OOH, 3CH, 70H, 23H, 
7CH, FEH, 40H, 20H, F9H, and C9H. 

The corresponding decimal values {from Appendix Hi) are 6, 32, 33, 0, 60, 112, 35, 124, 254, 64, 32, 
249, 201. 

How do we these values into RAM? An easy way in BASIC is to put the values into DATA 
statements and then POKE them into RAM with a short loop: 

1 00 DATA 6, 32, 33, 0, 60, 1 1 2, 35, t 24, 254, 64, 32, 249, 201 

1 1 0 FOR 1=32256 TO 32256+ 1 2 

120 READ A 

130 POKE !.A 

140 NEXT I 

In this loop a READ command gets the values from the DATA list. The POKE then POK Es the value 
into the current memory location (don't forget that 32256 corresponds to hexadecimal 7EOOH, the ORG 
point of the program). 

The" 12" in the FOR, .. TO statement corresponds to I less than the size of the program. If we had a 
program of JOO bytes, we'd use "32256+99." 

We'll assume that we've run the BASIC code above and that the object program has been loaded by the 
POKEs. At this point RAM locations 7EOOH through 7EOCH contain the CLRSCN program in 
"machine language." Nothing mysterious here; we've been doing the same thing in our ALT programs 
except that we weren't going to run BASIC along with the program. The next step is to tell the BASIC 
interpreter where the program is. 
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Defining Where the Object Is to BASIC 

If you are running ModelI Level n BASIC or Model m BASIC(withoutdisk), the following statements 
will tell the BASIC interpreter where CLRSCN is located: 

1 50 POKE 1 6526,0: POKE 1 6527, 1 26 

These statements store 7EOOH into locations 16526 and 16527 the same way we've been storing l6-bit 
data in A Lf. Locations l 6526, 7 are simply a BAS IC ''variable" that defines where the machine-language 
program is located. 

Transferring Control to the Machine-Language Code 
We're all set up now to transfer control to CLRSCN. We'll do it by a USR call. The BASIC USR cal! gets 
the location from the !6526,7 variable and simply does a CALL. That pushes the return address to the 
BASIC interpeter in the stack and saves the return point. The last statement in our CLRSCN program is 
a RET, which pops the stack and causes a return to the BASIC interpreter. 

If you have a non-Disk BASIC, this statement is the one to use: 

1 60 A=USR(O) 

Executing CLRSCN 
We've combined all of the statements above into a BASIC program that will: 

I. Move the CLRSCN values from DATA statements into the 7E00H area 
2. Define the location to BASIC 
3. Transfer control to CLRSCN 

If you execute the program below, you should see the screen ciear in a flash. Load the program going 
to BASIC and doing a LOAD "CLRSCN" from cassette_ Before you do, however 

PROTECT MEMORY BY ENTERING 32255 FOR THE 

MEMORY SIZE? 

PROMPT! 

Now execute the program by RUN. 

After the screen clears, you can interrupt the BASIC program by pressing BREAK. 

1 00 DATA 6, 32, 33, 0, 60, ! 1 2, 35, 1 24, 254, 64, 32, 249, 201 

1 1 0 FOR 1=32256 TO 32256+ 1 2 

120READA 

130 POKE l,A 

140 NEXT I 

1 51 POKE 16526,0: POKE 1 6527, 1 26 

1 61 A=USR(O) 

170GOTO 170 

To get back to ALT, you must reload, as BASIC and ALT arc mut.ually exclusive_ 

To Sum It All Up 
To review the considerable material we've covered here: 

• Assembly-language programs can be anywhere in RAM when run without BASIC interface 

• Assembly-language programs should be in high RAM when run with BASIC and this area should be 
protected by responding to the MEMORY SIZE'? message with the stan address of the program-I 
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• The ORG pseudo-op establishes the assembly origin for a program 

• JPs, CAL Ls, some LDs and other instructions may not be "relocatable"; they often contain absolute 
addresses that prevent them from running anywhere in memory 

• Loading object code can be done by POKEing in BASIC after first converting hexadecimal values to 
decimal 

• The location of the assembly-language program must be defined to the BASIC interpreter by storing 
the address in locations 16526.7 (non-Disk BASIC) 

• A OSR call transfers control to the assembly-language program 

For Further Study 
BASIC USR or USRn command (BASIC manual) 
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Lesson 24 
Interfacing to BASIC - Passing Parameters 

Load LESS24 from cassette. 

We've covered quite a bit of ground in the previous lesson. Let's review what we did. 

First of all we assembled an assembly-language program using A LT. This program took the form of a 
"subroutine," which, as we know, is really any program that is terminated by a RFC to return to a calling 
program. 

The program was assembled at location 7EOOH by using an ORG statement. We aimed for this area 
because we knew that we were going to be calling the program from BASIC and wanted to locate the 
program in high enough memory to protect it from overwriting by BASIC statements, variables, and 
other data. 

After the assembly, we didn't load the program directly into RAM by loading a cassette or disk object 
file, although we could have if we had been using a Series I assembler. 

Instead, we converted the hexadecimal values from the assembly listing into decimal values by using 
Appendix III. 

We then made up a BASIC program that consisted of three parts 

I. A DATA statement, or several DATA statements, that had all of the machine-language as decimal 
values. 

2. A short FOR ... TO loop to move these values from the DATA statements into RAM at the 
7E00H area. 

3. A BASIC statement that defined where the assembly-language program was, by 
POKE 16526,0:POKE 16527, 126. 

4. A BASIC call to the assembly-language program by a USR statement. 

We then executed the BASIC program. The program moved the machine-code values from the DATA 
statements into the 7EOOH area. It then took the address of the assembly-language program from the 
16526, 7 variable and transferred control by a simple CALL instruction, somewhere in the BASIC 
interpreter. 

The CLRSCN program then executed without any BASIC interference. H's important to note that once 
the assembly-language program is entered, BASIC has no control over it! That's good and bad -if the 
program has errors in it, there's no easy way to recover, as it may have destroyed critical memory 
locations used by BASIC! On the other hand it lets us execute the assembly-language code very rapidly, 
to supplement BASIC processing. 

The last instruction in the CLRSCN was a RET. The RET did not perform magic, but only popped the 
return address from the stack and caused a return to the BASIC interpreter at some internal point. The 
"internal point;' by the way, is a set of BASIC interpreter code that handles the USR call to assembly­
language programs. 

The stack used here is an internal BASIC stack, and we don't have to be concerned about establishing 
our own stack area. There's enough room in the BASlC stack for just about everything we'd want to do 
in simple assembly-language code. Besides that, if we used our own stack, we'd never be able to return to 
BASIC unless we carefully saved the return address by something l.ike a 

POP 
LO 

HL 
(RETPT),HL 

;get return 
;save for return 
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Passing a Parameter 
It's easy to see how the POKE 16526,7 works, but what about the USR call? We used the format 

1 00 A=USR(O) 

What is the (0) and the A variahk'? 

The way that BASIC works is that it takes the value from inside the parentheses, assumed to be a 16-bit 
integer value, and stores it in a special variable inside BASIC. This value can be accessed by the 
assembly-language program. 

For example, if we wanted to "pass" a value of 223 instead of 0, we'd say 

100 A=USR(223) 

If we wanted to pass the value of a variable, we'd say 

1 00 A=USR(B) 

We could even pass the value of an expression, as in 

1 00 A=USR(ZZ/256) 

The only requirement for the value is that it would have to be a BASIC "integer" value of -32768 to 
+ 32767. ln fact though, we can fool the BASIC interpreter into accepting an absolute value of O through 
65,535 by using the following rules: 

l. If the value is less than 32768, use the value alone: 

1 00 A=USR(30000) 

2. If the value is equal to or greater than 32678, use this form 

1 00 A=USR(40000-65536) 

You've seen in previous programs why we want to pass "parameters" to subroutines. In the SCANTY 
subroutine of Lesson 18, for example, we passed pointers to a table and the size of the table. Parameters 
make the subroutine more flexible and generalized. 

The USR call, then, lets us pass one 16-bit value as a parameter to the assembly-language subroutine. 

Passing a Parameter Back 
What about going the other direction? Just as you might suspect, BASIC also allows us to pass a 16-bit 
value back from the assembly-language subroutine to BASIC. You might use the assembly-language 
code, for example, to scan a table for a certain value and pass back the location of the value, if found. 

The A variable in 

1 00 A=USR(B) 

is set equal to the 16-bit value returned by the assembly-language subroutine. Of course, if the 
assembly-language subroutine doesn't need to return a value, then A is not used and is a "dummy;' just as 
the O value was in 

1 00 A=USR(O} 

A Sample Parameter-Passing Subroutine 
To show you how this works and what we must do in the assembly-language subroutine, enter the 
following program, or use the Lesson file. 
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100 ORG 7EOOH 

1 20 ;• SUBROUTINE TO FIND SQUARE ROOTS 

1 30 ;• ENTRY: SQUARE IN 1 6 BITS 

140 ;• EXIT: SQUARE ROOT IN 1 6 BITS 

160SQROOT CALL OA7FH ;get argument 
170 LO A,-1 ;clear square root 
180 LO BC,-1 ;initialize odd integer 
190SQR010 ADD A, 1 ;square root+ l 
200 ADD HL,BC ;subtract 
210 DEC BC ;BC-l 
220 DEC BC ;BC-I 
230 JP C,SQR010 ;loop if not minus 
240 LO L,A ;square root now in L 
250 LO H,O ;now in HL 
260 JP OA9AH ;return argument 
270 ENO ;end 

Assemble the program and get a printed listing if you have a system printer. Otherwise note the object 
code values at the assembly. 

This program is a modification of the square root program found in Lesson 9. Refer to that lesson if you 
like to refresh your memory about how it works. The parameter on entry is a 16-bit square from 0 
through 65,535 (unsigned). On the square ofO through 255 is found. The square is taken to the next 
lower integer for fractional squares, 

If you refer back to the program in Lesson 9, you'll notice two additional instructions. 

The CALL 0A 7FH instruction at the very beginning is a CALL to a BAS IC interpreter subroutine. The 
BASIC subroutine finds the argument from the USR call and puts it into the HL register pair and then 
returns to the assembly-language code, This is the way that BASIC passes that l 6-bit value from the 
USR ca!L At the LO A,-l instruction, therefore, we've got the argument from BASIC in HL. 

The JP 0A9AH instruction jumps back to a BASIC routine that takes the contents of the HL register 
and stores it into the variable used in the USR call to the left of the equals sign. If we had 

1 00 ZZ=USR(B) 

for example, variable ZZ would contain the square after the return to BASIC. Note that if no argument 
is to be returned, a RET instruction is used. Only if the argument in HL is to be returned is the JP 
0A9AH used in place of the normal RET. 

It seems, then, that the entry to assembly language is with an optional argument in H Land that the exit 
from assembly language is by an optional argument in H L. 

Running the Subroutine in BASIC 
Ok, it's about time for you to make your first conversion to BASIC. Look at the object code for 
SQROOTand convert it to decimal values. Then write a BASIC program to store the decimal values in 
DATA statements, define the location of SQ ROOT, and call SQ ROOT Abc,ut the only thing you1l have 
to do differently from the subroutine of the last lesson is to put in some logic for reading the s4uare and 
listing the square root. Make it as simple as possible. 

Got it? See how it compares to this BASIC program: 
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100 REM SQUARE/SQUARE ROOT 

110CLS 

120 DATA 20!5, 127, 10, 62, 2!5!5, 1, 2!5!5, 2!5!5, 198, 1, 9, 11, 1 1 

1 30 DATA 21 8, 8, 1 84, 1 1 1, 38, 0, 1 95, 1 !54, 1 0 

140 FOR 1•322!56 TO 322!56+21 
1!50 READ A 

160POKEl,A 

170 NEXTI 
181 POKE 1 6!526,0: POKE 1 6!527, 1 26 

190INPUTSQ 
201 SR•USR(SQ) 

210 PRINT "SQUARE=":SQ,"SQUARE RT=":SR 

220GOTO 190 

Even if your BASIC code does not look quite the same, the DATA values should be identical. 

You can now go to BASIC and load the BASIC SQROOT program above. The name is SQROOT. 
Don't forget to protect memory by responding to the MEMORY SIZE? prompt by 32255! Or, if you'd 
like, try your own program first. 

The program should print the square roots of all numbers input. If the SQ (square) is greater than 
32,767, however, you will have a problem. BASIC will accept the entry on the INPUT statement, but 
when it comes time to make the USR call, BASIC will see that the value is larger than the maximum 
possible for integer values of + 32,767. Do you know how to fix it? 

If you guessed that you'd have to use 

201 SQ=USR(SQ-6!5!536) 

in place of the previous statements you'd be partially correct. This will work for all values greater than 
+32,767, but will not work for values of 0 through +32,767. What we really need is 

1 99 SX=SQ: IF SQ>32767 THEN SX=SX-6!5!536 

201 SR=USR(SX) 

We11 leave it up to you to change the program accordingly. 

As SR is returned as a value from Oto 255, there ~s no problem with it. 

To get back to ALT, you must reload, as BASIC and ALT are mutually exclusive. 

To Sum It All Up 
To recap what we've learned in this lesson: 

• It's not necessary to use your own stack when interfacing to BASIC; BASIC maintains its own 

• The USR() call passes the argument within the parentheses if a "CALL 0A7FH" is done in the 
assembly-language program 

• The USR call returns the argument from the assembly-language program if a" JP 0A9AH" is done in 
lieu of the RET in the assembly-language program 
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• Variables are passed in the HL register pair 

• Variables must be 16-bit integer variables 

• If variables are over 32,767, then the XXXXX-65536 form must be used to fool the BASIC interpreter 

For Further Study 
BASIC integer variables (BASIC manual) 
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Lesson 25 
V ARPTR and Passing Multiple Arguments 

Load LESS25 from cassette. 

In this lesson we'll learn some further tricks about how to interface to assembly-language subroutines 
from BASIC. First of all we'll go into some detail on VARPTR, a BASIC function that is used quite 
frequently in finding addresses of data to pass to assembly-language subroutines. Secondly, we'll look at 
how we can pass multiple arguments. 

VARPTR 
VARPTR lets us find the address of any variable in a BASIC program. This is important to assembly­
language subroutines because it allows the subroutine to access BASIC data such as arrays and strings. 

The format of VARPTR is 

1 00 VARPTR(XX) 

where XX is a variable name. 

Although VARPTR can be used to find the addresses for integer, single-precision, double-precision, 
string, and array variables, we 11 just be considering string and array variables here. The reason is this: we 
can already pass an integer-sized value by the USR call, and the single-precision and double-precision 
variables use a complex floating-point format that is beyond the scope of this text. The VARPTR is 
most often used with strings and arrays. 

Using V ARPTR With Strings 
When VARPTR is used with a string variable, it has the format of 

100 A=VARPTR(AA$) 

where AA$ is any string variable name. 

VARPTR will put the address of a string "descriptor block" in the A (or other) variable. The string 
descriptor block is shown in Figure LESS25- I. 

BYTE0 

1 

2 

LENGTH IN BYTES 

LS BYTE OF ADDRESS 

MS BYTE OF ADDRESS 

T 

R 

s 

E 

A 

s 

POINTS TO 
FIRST BYTE 
OF STRING 

LENGTH OF 
STRING 

Figure LESS25-1. String Descriptor Block 

The first byte of the string descriptor block is the length of the string in bytes. Each character in the string 
occupies one byte and the total number of string bytes may be O to 255. 
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The second and third bytes of the string descriptor block define the actual address of the string. This 
address is in the standard Z-80 address format we've grown to know and love so well, least significant 
byte followed by most significant byte. 

Where are strings located? 

If you have a string in a BASIC statement, such as 

100 AS-"THIS IS A STATEMENT STRING" 

then the string will be in the BASIC program statement itself. BASIC statements start in low RAM 
before variable and other storage and continue to build upward. There's a good chance that the BASIC 
statement and string will be before the 8000H (32768) location and you won't have to use the 
XXX-65536 format, unless you have a lengthy BASIC program. 

1 00 AS=="THIS IS A PRO" 
1 1 0 BS="CESSED STRING" 

1 20 CS=AS+BS 

If you have a string that is "processed," such as C$ in the above, then the string will be found in the string 
storage area. This is a temporary storage area for strings that are not present in BASIC program lines. 
The string storage area is in high memory, just below the protected area for assembly-language 
subroutines and a BASIC stack. There's a good chance you11 have to use the XXX-65536 format here. 

To pass the location of a string to an assembly-language subroutine, you'd have to do something like: 

100 SL==VARPTR<ZX$> 'find string des block location 
1 1 0 IF SL>32767 THEN SL==SL-6!5!536 
120 A•USR(SU 

Of course, we've left off all of the other logic concerned with moving the machine-language values and 
defining the location here. In this case, BASIC would have the location of the string descriptor block 
(not the string) ready to be picked up by a CALL 0A 7FH. 

Using V ARPTR With Arrays 
When VARPTR is used to find the location of an array, it has the same basic format as with strings. To 
find the location of array ZX, an integer array, you would use: 

100 A•VARPTR<ZX(0)) 

This finds the location of the first element in the array ZX. An integer array is made up of two-byte 
elements, a single-precision array of 4-byte elements, and a double-precision array of 8-byte elements. 

For a one-dimensional array, the elements start with 0, I, 2, etc. The I 0th element of integer array ZX, 
for example, would be 20 bytes after VARPTR (ZX(0)). 

For multiply-dimensioned arrays the format is more complicated, and we'll leave it up to you to research 
after this course (information on array formats is in the BASIC language manual for your Model I 
or III). 

String arrays are not "contiguous" as are the other types of arrays. String array descriptor blocks are 
grouped together in one mass, however, as shown in Figure LESS25-2. 
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LOW 
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ADDRESS OF STRING 2 

Figure LESS25-2. String Descriptors In String Array 

To find the location of any string array, just use the index of the array variable as in 

1 00 A=VARPTR(A$(5)) 

The address of the string descriptor block will be returned in A. 

To show you how VARPTR works, enter the following program, or use the Lesson file: 
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100 ORG 7EOOH 

1 20 :• SUBROUTINE TO PRINT STRING IN REVERSE 

1 30 :• ENTRY: STRING DESCRIPTOR BLOCK LOCATION 

140 ;• e:xrr: PRINT IN REVERSE ON SCREEN 

160PRTSTR CALL. OA7FH :get location 
170 PUSH HL ;move to IX 
180 POP IX 

190 LO E,OXl ;length of string 
200 LO L,nx+ 1) ;get Is byte of Joc'n 
210 LO H,(IX+2) ;get ms byte of loc'n 
220 L.D B,E ;in 8 for count 
230 LO D,O ;length in DE 
240 ADD HL,DE ;point to end+ I 
250 DEC HL ;end 
260 LO IX,3E10H ;point to screen center 
270 LO A,B ;get count 
280 OR A ;test for 0 
290 JR Z,PRT090 ;go if "null" string 
300 PRT010 LO A,(HU ;get string character 
310 LD UX),A ;store on screen 
320 DEC HL ;bump string pntr 
330 INC IX ;bump screen pntr 
340 DJNZ PRT010 ;go if not done 
350PRT090 RET ;return to BASIC 
360 ENO :end 

----~------•·~-------~-·---------·-
Assemble the code and convert the object to decimal values. 

PRTSTR first calls the BASIC subroutine at OA 7FH to get the string descriptor block location. It 
assumes that something like A= VAR PTR(A$) has been done in the BASIC program and that the string 
location is waiting to be picked up_ 

The string descriptor block location in H Lis then transferred to l X. Eis loaded with the string length, 
which may be 0. 

The next two loads load HL with the actual address of the string from the 2nd and 3rd bytes of the string 
descriptor block. 

H L now contains the address of the string, whether it is in a BASIC statement or string variable storage. 

The length in DE is now added to H Land the result is decremented by one to point to the last character 
in the string. 

IX is loaded with the location oft he center character position of video memory. As you recall, the video 
memory goes from 3COOH through 3FFFH, and the center minus a few character positions is at about 
3EI0H. 

The string length in Bis now tested for 0. If the length is 0. nothing will be printed on the screen, and a 
jump is made to the return point. 

If the string length is not 0, the PRT0JO loop prints the string in reverse on the screen, using the string 
"pointer in HL, the screen pointer in IX, and the counter in B. 

Try your hand at writing a BASIC program to interface with this assembly-language subroutine. 
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A BASIC program using this code is shown below. You can load it from cassette with file "PRTSCN?' 

100 REM PRINT REVERSE STRING 

1 10 CLS: CLEAR 1000 

120 DATA 20!5, 127, 10,229,221,22!5,221,94,0,221, 1 1 O, 1,221, 102,2 

130 DATA 67,22,0,2!5,43,221 ,33, 16,62, 1 20, 183,40,9, 126,221, 119,0 

140 DATA 43,221,3!5, 16,247,201 

1 !50 FOR 1=322!56 10 322!56+37 

160READA 

170POKEl,A 

180 NEXT I 

191 POKE 16!526,0: POKE 16!527,126 

200SB=O 

2101NPUT A$ 

220CLS 

230 SB=VARPTR(A$) 

240 IF SB>32767 THEN SB=SB-6!5!536 
2!51 SR=USR(SB) 

260GOT0210 

Even if your BASIC code does not look quite the same, the DATA values should be identical. 

Run the program above or yours, and you should see any string that is input displayed across the screen 
in reverse. Hit BREAK to stop the program and reload ALT. 

An important point about using BASIC programs: V ARPTR locations tend to move! To use VA RPTR 
properly, you must use it just before the USR call and not introduce "new"variables before the CALL. 
That's why we defined variable SB in line 190 instead of defining it with the VARPTR call. Any new 
variable may move all variables down, invalidating a VARPTR location. 

Passing Multiple Arguments 
We've seen how we can pass a single 16-bit argument or parameter to an assembly-language subroutine 
and how to pass one argument back. How can we pass several arguments? After all, even the subroutines 
we used earlier required more than one argument. 

There are a number of ways to do this. If the arguments are small enough, then you can put them into H 
and L. If we had wanted to clear the video display from a given line and character position, then we 
might have had something like this: 

;••·························································································· 
:•CLEAR SCREEN FROM LINE X, CP Y 

:• 
:• 

ENTRY: (H)=LINE #, 0 - 1 !5 

(L)=CP, 0 - 63 
• 

;••·························································································· 
In this case the line values and character position values are small enough to fit into a byte each, and 
there's no reason why we can't pack them together. 

Another way to pass multiple arguments is to use the 16-bit value passed from BASIC as a pointer to a 
"parameter block." The parameter block could be filled with POK Es from BASIC and could be in a 
predefined, protected area of RAM. 

Suppose that we had the following parameters to pass to an assembly-language subroutine that searched 
a string array for a given string. We might have something like this ., 
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Location BOOOH=LS byte of first descriptor block 
BOOIH=MS Byte of first descriptor block 
B002H=LS byte of# elements in string array 
B003H=MS byte of# elements in string array 
B004H=LS byte of search string block address 
B005H=MS byte of search string block address 

We used an area of protected RAM to hold the parameter block. The first two bytes hold the address of 
the first descriptor block of the string array. The next two bytes hold the number of elements in the array. 
The last two bytes hold the address of the search string descriptor block. These values could all have been 
put into the parameter block by BASIC POKEs. 

The search subroutine can output arguments in the same way. It can store the output parameters as 
follows: 

Location B006H=LS byte of found string or -1 
B007H=MS byte of found string or -1 
B008H=element number if found 

The BASIC program can then pick up the output parameters by PEEKs. 

To Sum It All Up 
To review what we've learned here: 

• VARPTR is used in BASIC to find the location of a BASIC variable 

• The location of any variable type may be found by VARPTR 

• Each string in BASIC is defined by a "string descriptor block" that holds the string length in the first 
byte and the string location in the second and third bytes 

• VARPTR locations may change between the VARPTR use and the USR call if previously undefined 
variables are used 

• Multiple arguments may be "packed" into H and L if their number ranges are small enough 

• Multiple arguments may also be passed via a parameter block in protected area of memory; this block 
is used by both BASIC and the assembly-language program as a "common" area 

• POKEs and PEEKs can be used by BASIC to store and read values from the parameter block 

For Further Study 
BASIC PEEK (BASIC manual) 
BASIC VARPTR (BASIC manual) 
BASIC array formats (BASIC manual) 
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Lesson 26 
Using ROM Subroutines 

Load LESS26 from cassette. 

BASIC in the Model I or III is written in assembly language. There are certain subroutines, called 
"ROM subroutines"that are available to the user. In fact, there could be many different subroutines that 
you might use, but the ones we're going to discuss here are common subroutines whose definition will 
not change. Why? Primarily because they are documented in Radio Shack manuals as user-accessible 
entry points. It would be very difficult to document all possible subroutines. Later revisions to the 
BASIC interpreter might be very difficult if all subroutines had to remain fixed in location and input and 
output parameters. 

There is a complete list of all ROM subroutines in the user manuals for Model I and III BASIC and in 
other Radio Shack manuals. We'll just be working with two ROM subroutines here. They are 

I. Wait For Keyboard Character, Location 0049H 
2. Display a Character, Location 0033H 

Cautions On Using ROM Subroutines 
One of the most important points that we can make about ROM subroutine use is that you must be 
aware of which registers the subroutine uses. This is true for any subroutine called, ROM subroutine or 
not, although we didn't stress this too greatly in previous lessons. 

The Wait for Keyboard Character subroutine, for example, returns the character of the next key pressed 
on the keyboard in the A register. In doing so, it alters the DE register. 

The Display Character subroutine displays the ASCII character in A, but in doing so, it also alters the 
DE register. 

If you are using the DE register pair to hold a pointer value, or any other quantity, it will be destroyed 
after a return is made from either one of these subroutines. Prior to calling the subroutines, therefore, 
you must PUSH DE if it holds anything of value. 

As a matter of fact, if you are unsure of which registers are used in a subroutine, there's no reason why 
you can't PUSH all of the registers, or at least all of the ones you're using. To save all registers only takes 
6 instructions: 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
CALL 
POP 
POP 
POP 
POP 
POP 
POP 

AF 
BC 
DE 

HL 
IX 
IY 
XXXXH 
IY 
IX 
HL 
DE 

BC 
AF 

;save registers 

;call subroutine 
;restore registers 

Using Display a Character and Wait for Character 
Display a Character 
This ROM subroutine is entered with a display character in the A register. The subroutine displays the 
character at the current screen location and then returns to the user program with DE altered. Doesn't 
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26 -~L~ing ROM Subroutines 

sound like much, does it? In fact, though, you have all the power of the Display Driver at your disposal 
through this point With !.he right character, you can dear the screen, tab, ernse to end of line, move 
the cursor, or output characters. 

Using Display a C'haractcr is as simple as it looks. Put the character in A and CALL location 0033H. 

Wait For a (:baracter 
Thi.,; ROM subroutine is entered with no parameters and returns to the user program with an ASCH 
character representing: the next kcypress in the A register with l)E destroyed. The character entered is 
not displayed on the screen. If no key is pressed Wait For a Character docs not return! 

Here again, this doesn't seem like a very powerful subroutine, but don't forget that implicit in this call are 
hundreds of bytes of instructions, including keyboard debouncing, "n" key rollover, and other 
processing. 

With only these two ROtvl subroutines as a base, you can build a whole series of your own subroutines 
that can translate character perform special display functions, do word processing, and other 
applications. 

A Simple Text Editor 
To show you how these two subroutines can be used to build on, we've written a simple text editor. This 
program will utilize the Wait For Character and Display Character subroutines to implement a 
"stand-alone" text editor that will allow you to enter text and store it on the screen. The screen cursor is 
controlled by the up arrow, down arrow, right arrow, and left arrow keys; you may move the cursor 
anywhere on the screen that you wi~h to initiate new text, or to overwrite old. 

Enter the program below, or use the Lesson file: 

140 MINITE CALL HOME ;home cursor 
150 LO A,tFH ;erase to end of disp 
160 CALL 33H ;output 
170 CALL HOME :home cursor 
180 LO A,OEH ;cursor on 
190 CALL 33H ;output 
200TXT010 CALL 49H ;input character 
210 LO HL,FTAB Junction key table 
220 LO BC,4 ;size of table 
230 CPIR ;search for key 
240 JR Z,TXT020 ;go if found 
250TXT015 CALL 33H ;not fnd, output char 
260 JR TXT010 ;go for next char 
270 TXT020 LO BC,FTABP1 ;start+ I 
280 OR A ;clear carry 
290 SBC HL,BC ;find index 
300 PUSH HL ;index to IX 
310 POP IX 

320 ADD [X,IX ;index*2 
330 LO BC,BTAB ;branch table start 
340 ADD IX,BC ;point to BR <!ddress 
3!50 LO L,CIX} ;get BR address 
360 LO H,UX+ 1 > 
370 JP (HU ;branch out 
380 FTAB DEFB 5BH ;up arrow 
390 FTABP1 DEFB OAH ;down arrow 
400 OEFB 09H ;right arrow 
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Using ROM Subroutines 26 
410 DEFB 08H ;left arrow 
420BTAB DEFW UPARR ;up arrow proc 
430 DEFW DWNARR ;down arrow proc 
440 DEFW RGTARR ;right arrow proc 
450 DEFW LFTARR ;left arrow proc 
460UPARR LO A,1BH ;move cursor up 
470 JR TXT015 ;output 
480DWNARR LO A,1AH ;move cursor down 
490 JR TXT015 ;output 
500 RGTARR LO A,19H ;advance cursor 
510 JR TXT015 :output 
520 LFTARR 1...0 A,18H ;backspace 
530 JR TXT015 ;output 
540HOME LO A,1CH ;move cursor upper left 
550 CALI... 33H ;output 
560 RET ;return 
570 END ;end 

For this program only we have disabled the normal controls of AIT so that you can execute the program 
without ALT interference. Assemble the program and get an error-free assembly. Now execute the 
program by transferring control to the starting address (check the listing) by 

ZXG XXXX 

where XXXX is the starting address 

Once this is done, by the way, you'll have to reload ALT and the Lesson File. 

You'll see the program clear the screen and position the cursor in the upper left-hand corner of the 
display, the HOME position. You can now enter upper-case text and move the cursor around with t.he 
arrows. 

The Wait For Character subroutine at 33H returns a code corresponding to the key pressed. Usually this 
is an ASCII code corresponding to an alphabetic character, numeric character. or special character, such 
as "#:' 

The subroutine, however, also returns codes for special keys, such as the arrow keys, ENTER, and 
others. You'll find a complete list in the back of your BASIC manual. The ones we'll be considering here 
are the codes for up arrow (5BH), down arrow (OAH), right arrow (09H), and left arrow (08H). 

On the output, or display side, the Display Character subroutine at 49H normally displays alphabetic, 
numeric, or special characters. but also uses special codes to perform certain functions. Outputting a 
ICH, for example, moves the cursor to the upper-left hand corner of the screen, the so-called HOME 
position. 

The I BH code moves the cursor up; at the top boundary, the cursor appears at the bottom of the screen. 
The I AH code moves the cursor down; at the bottom boundary, the cursor appears at the top of the 
screen. The l 9H code advances the cursor to the next character position. The l.8H code "backspaces"the 
cursor to the left without deleting a character. 

The cursor itself is turned on by a OE H character. 

In general, most of the special character input and output codes are below 20H, the first "text" character, 
a space. 

Let's take a more detailed look at the program: 

There's one subroutine called HOME. This simply outputs a HOME code by calling the Display 
Character subroutine in ROM. 
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26 Using ROM Subroutines 

HOME is called to initialize the display. Next, a !FH code is output to Display Character. This is a 
special code to "erase from the current cursor position to the end of the display." The current cursor 
positi<m is upper left, which was automatically established in the display driver when the HOME code 
was output. 

Let's stress here that the major part of the display effort ----·· computing addresses, blinking the cursor, 
maintaining the cursor position, "automatic"typing when the key is held down --is all done in the ROM 
display driver, accessed by the CALL to 33H. 

After the display is cleared, a CALL to HOME returns the cursor to the upper left position. 

TXT0 IO starts the main loop of the program. 

The next keypress is input from the Wait for Character subrout.ine. A scan is then made through the 
FTAB table to see if the input character matches any code in the table. There are 4 codes in the table, 
corresponding to the arrow key codes. At the end of the CPlR, the HL register points to the character+ I 
if the character has been found (Z). 

If the character has not been found, then the character is a "normal" text character. It's output to the 
display by CAL Ung 33H at TXT0 15. Note that up to this point, no character has been output; reading 
in the character does not automatically display it. After the output, a loop is made back to TXT0IO to 
input and display the next character. 

If the character is found in the FTAB, then the start address of FTAB+ tis subtracted from the contents 
of HL. HL now contains an index of 0, I, 2, or 3. This index value is doubled and added to the starting 
address of BTAB, a "branch table." At the end of the add, IX points to a branch address corresponding to 
the processing for the special key. HL is then loaded with the branch address from the table, and a JP 
(HL) branches out to one of the four processing routines. 

Each of the 4 processing routines simply outputs the Display Character code corresponding to the 
special function and then returns to TXTO lO for the next input character. 

Using ROM Subroutines for Your Own Code 
The simple program above shows you how you can take advantage of some of the existing ROM 
subroutines to eliminate a lot of tedious coding. Look for other examples of keyboard input processing, 
display output, line printer output, cassette operations, and disk operations in your BASIC and other 
manuals. 

To Sum It AH Up 
To review what we've learned in this lesson: 

• There are a number of documented ROM subroutines that can be used to eliminate your own 
assembly~language coding for keyboard input, display operations, and others 

• When using these subroutines, or any subroutines, you must be aware of which registers may be 
destroyed by the action of the subroutine; save these registers by PUSHes before the subroutine call 

• Display Character subroutine outputs one character to the video display and uses the full logic of the 
BASIC display driver software 

• Wait For Character inputs the next keypress from the keyboard input driver 

• Special character codes exist for both keyboard input and display output; they are separate from the 
normal input and output of ASCII text and are usually in the OOH through lFH range 

For Further Study 
Character codes for input and output (BASIC manual) 
ROM subroutines (BASIC and other manuals) 
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Lesson 27 
Where Do You Go From Here? 

There is no Lesson File for this lesson. 

In the past lessons, we've given you a description of the instruction set and addressing modes of the Z-80, 
provided some instruction on using a typical editor/ assembler for assembly-language programs, given 
you techniques for interfacing to BASIC, and described some BASIC ROM subroutines that simplify 
coding. How do you put all of this information together to write your own assembly-language 
programs? 

In this final lesson, we'll look at a plan for doing this. The plan consists of 5 parts -- design, flowcharting, 
coding, debugging, and documentation. 

Program Design 
This is the first stage of any program, whether it is BASIC programming or assembly-language 
programming. Program design for large programs in many cases consists of writing the "design 
specification" for the program before anything eise is done. 

The design spec is a detailed manual outlining what the program will do and in general how it will go 
about it. AB screen formats, record formats, menus, and commands are listed and detailed. 

Of course, for small programs you don't really need this design spec. If you were implementing a bubble 
sort, for example, you know that the sort has to put all of the data items of a table in sequence, and not 
too much more can be said about it. 

This design phase of a program is still critical, however, even though you don't write a design spec. You 
should spend some time thinking about the general "dimensions" of your problem. In the case of a 
bubble sort, for example, you might ask yourself how many entries will be sorted, what the maximum 
number of entries are, whether the number of entries can be held in 8 bits or 16, where the table will be 
located, how large the size of entries will be, and so forth. 

If you don't give the problem some thought, you may find yourself in the middle of a program that won't 
work because it simply can't! 

Program Flowcharting 
The next step in any type of programming is flowcharting. We've used a few flowcharts in these lessons, 
so you're somewhat familiar with the symbols. 

For a recap, the symbols are shown in Figure LESS27-L 
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GET COUNT 

PROCESSING 
80)( 

DECISION 
BOX 

YES 

SUBROUTINE 
CALL 

y ENTRY 
POINT 

i 
\exn7ex1T V POINT 

~ ON-PAGE 
CONNECTOR 

~ OFF-PAGE 
CONNECTOR 

Figure LESS27-1. Flowcharting Symbols 

The rectangular box is a "processing box." Any type of general processing, such as "LOAD NUM WITH 
O," "GET NEXT CHARACTER;' or "BUMP POINTER BY I" is put into the box to describe the 
processing action. 

The diamond is a decision box. The decision box would be equated to conditional jumps in assembly 
language. Two or more exit points might be used from the decision box. You might have something like 
"A<B?" with one branch labeled "YES" and the other "NO;' or you might have "MORE ENTRIES?" 
with another set of "YES" and "NO" exits. 

I've used the six-sided symbol for subroutine processing, although this is not always standard. It's 
customary to put the name of the subroutine at the upper right of the box. The description within the 
subroutine box might be something like "SCAN TABLE FOR LEAST ENTRY" or "CONVERT TO 
BINARY." 

The triangles are exit and entry points from a subroutine or other code. Typical descriptive text would be 
"ENTER" or "ENTER FROM COMMAND INTERPRETER"in the entry points and "RETURN" or 
"RETURN TO MAIN" in the exit points. 

The circles are "on-page connectors." They are usually labeled with alphabetical letters. Two circles on 
each page will have the same designator, showing how the program flows without having to draw 
confusing lines. 

The spade-shaped symbols are "off-page connectors;' which connect a program point to a continuing 
point on another page. The off-page connectors are usually labeled with page n'tlmbers. 

Typically, labels at the top left of each flowchart symbol represent the label that will be used in the 
assembly listing. 

The above flowchart symbols are suggestions only, although the rectangle and diamond are standard 
symbols. 
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Flowcharts usually flow down and to the right. 

When flowcharts are done before a program is coded, it makes it very easy for a programmer to see what 
is happening without having to wade through dozens of instructions. 

Do you need to flowchart? Not for simple programs. For programs that involve dozens ofinstructions, a 
quick rough flowchart helps clarify what you're going to do, however. For larger programs, flowcharts 
are a must. They help you plan the code and provide an indication of how you did things when you come 
back to the program six months later! 

Some programmers use notes as an alternative to flowcharting. Use flowcharts first for larger programs, 
and then find a technique that seems to work for you. 

If you are flowcharting your program, try to divide a large program up into subroutines and other 
"modules" as much as possible, rather than having one huge set of continuous code. 

A module would in many cases be a subroutine with the entry conditions and exit conditions very well 
defined, as we've done in some of the subroutines in this text. 

In other cases, a module would simply be a functional processing block that performed a specific 
function, such as doing the "insert" function of a word-processing program. 

Program Coding 
After some thought about program design and some flowcharting for larger programs, you're ready to 
code. You may find that your flowcharts are detailed enough so that you can just sit down and enter 
instructions directly into the editor/ assembler. Chances are, though, you'll have to code your program 
first using paper and pencil. 

Once you've coded the program on paper and given it a cursory check, you're ready to enter it into the 
editor/ assembler. 

A few tips about program structure: 

• Programs usually flow through from beginning to end. 

• Try to utilize as many subroutines and modules as possible. 

• Use labels for subroutine and module entry points that correspond to the function "ROCHA R"for 
"Read Character," for example. Labels after this entry point may be defined by the first 3 letters of the 
function and then 3 digits in ascending order. You might have the labels "RDC0I0," "RDC030," and 
"RDCIOO" as three labels in the RDCHAR subroutine, for example. 

• Use as many comments as possible. 

• Format your programs with "pretty printing." Bracket subroutines with asterisks or other symbols, 
and try to create listings that are easy to read. 

• Use labels that correspond to the flowchart location points. You might want to go back and add the 
labels to the flowchart after you've coded them. 

• Labels are not necessary unless they define jump locations or subroutine locations. They just take up 
space in the assembler symbol table otherwise. 

When you assemble the program, don't be disappointed if you get dozens of errors. This happens to 
every programmer at different times. Typically, it might take 3 passes to get rid of all errors. 

Once you have a "clean program" without errors, you're ready to do program debugging. 

Program Debugging 
The first step of debugging is called "desk checking." Sit down at your desk and carefully go over the 
program listing. You may even want to "play computer" and pencil in the registers and stack, and then 
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follow the program flow. Chances are you 11 uncover some errors that will necessitate reassembly. Again, 
don't be dismayed, few programmers can write programs that work the first time. 

After you've thoroughly desk checked the code and made any necessary changes and reassemblies, 
you're ready for "on-line" debugging. 

If you're using ALT, there are some built-in debugging tools that will help you: 

• The ZB command lets you set breakpoints to stop the program at any location, once that location is 
reached. 

• The ZT command lets you trace any memory area either while running the program or afterward 

• The ZS command and ZX command let you execute the program at slow speed and observe the 
registers and memory trace area. 

• The ZR command and ZM command let you change registers or memory to "dummy up" data or 
establish test cases. 

If you 're using the Series I Editor/ Assembler, you 11 need a DEBUG package, available on either cassette 
or disk. The DEBUG package will give you most of the ALT features and some additional ones that will 
help in debugging. 

There is no set procedure for debugging, but here are some general guidelines: 

• Use breakpoints to narrow down where an error is occurring. Breakpoint at one location and see if the 
location is reached. If not, go to the halfway point and breakpoint there, and so forth, until you find 
the spot where the error occurred. 

• ALT will give an error message if you attempt to jump out of the program area. It gives you full 
control over program execution. 

• If you are not using ALT, always reload the program if it "blows up:' instead of restarting the DEBUG 
package. Incorrect program operation might have destroyed parts of your program, and this will 
create further errors or misleading information. 

• Be aware of which instructions affect the Flags and which ones do not. INCs and DECs of register 
pairs, for example, NEVER affect the Flags. 

• Make certain that you handle the stack properly. You should have a PUSH for every POP and an 
RET for every CALL. 

Program Documentation 
Once you have a final version of a program, sit down and write a brief summary of how it works. Include 
"internal" tables and data structures and a description of program variables, if the program is large. If 
you have a simple subroutine interfacing to BASIC that is commented on the listing, this step is not 
necessary. 

To Sum It All Up 
To review what we've learned in this lesson: 

• Program development consists of program design, flowcharting, coding, debugging, and 
documentation 

• The design phase consists of a program specification, or at least some serious thought about what the 
program is to accomplish and how it will go about it 
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• Somewhat standardized flowchart symbols are used to layout the program flow in "schematic" form 

• Coding should first be done on paper and then entered into the Editor/ Assembler 

• Debugging consists of desk checking and actual "on-line" debugging using a DEBUG package to 
trace down errors 

• Final documentation may be written for larger programs to describe program operation 

For Further Study 
Model I/III Series I Editor/ Assembler 
"TRS-80 Assembly-Language Programming," Radio Shack 26-2006, by William Barden, Jr. 
"More TRS-80 Assembly-Language Programming;• Radio Shack 62-2075, by William Barden, Jr. 
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Command 

A 

D 

H 

I 

L 

N 

p 

Q 
w 

ZB 
ZM 
ZR 

ZS 
ZT 

zx 

zz 

Appendix I. ALT Commands 
Format 

A 
A WE 
A LP 
DLLL 
D# 
D* 
DLLL:MMM 

HLLL:MMM 

ILLL,II 

L 
L NAME 
NLLL,Il 

p 
P# 
P* 
PLLL 
Q 
w 
WNAME 
ZB MMMM 
ZM MMMM 
ZR R= 

ZS NNNN 
ZT MMMM 
ZTT MMMM 
ZT 
ZTT 
ZT+ 
ZT-
zx 
ZX MMMM 
ZXG MMMM 
zxs 
ZZ MMMM 

Description 

Assembles current source code 
Assembles with "wait on error" 
Assembles with line printer output 
Delete source line LLLL 
Delete starting line 
Delete ending line , 
Delete lines LLL through MMM 
( *, #, or period may be used) 
H ardcopy lines LLL through MM M to line printer 
(#, *, or period may be used) 
If no source lines, start new source from LLLL with increment II 
If source lines, insert between lines with line number LLLL and 
increment II 
Load next file from cassette or file "NONAME" from disk 
Load file "NAME from cassette or disk 
Renumber source lines starting with line number LLL and 
increment II 
Display next 5 lines 
Display from starting line 
Display ending line 
Display from line LLL 
Quit. Go back to BASIC or TRSDOS 
Write file on cassette or disk with name "NONAME" 
Write file on disk or cassette with name "NAME" 
Breakpoint instruction at memory location hex MM MM 
Modify memory location hex MM MM 
Modify register R (A, F, R, C, D, E, H, L AF, BC, DE, HL, IX, 
IY, SP, PC) 
Set speed from O (slowest) to 9999, NNNN in decimal 
Trace memory location hex MMMM 
Trace memory location hex MMMM in ASCII 
Switch to hexadecimal trace 
Switch to ASCII trace 
Trace next 32 memory locations 
Trace last 32 memory locations 
Execute from start of object file 
Execute from hex address M MMM 
Execute from hex address MMMM without AIT control 
Execute, single step by keyprcss 
Zap (delete) breakpoint at instruction at memory location 
hex MMMM 
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Appendix II. ALT Assembler Pseudo-Ops 
Pseudo 

Op Format Description 

DEFB (LABEL) DEFB NN Generates one byte in decimal 
NNH Generates one byte in hex 

DEFM (LABEL) DEFM 'string' Generates a string of chars 
Only first 4 characters printed 

DEFW (LABEL) DEFW NNNN Generates two bytes in decimal 
NNNNH Generates two bytes in hex 

DEFS (LABEL) DEFS NNNN Reserves NNNN (decimal) bytes 
NNNNH Reserves NNNN (hex) bytes 

END (LABEL) END Terminates interpreter 

ORG (LABEL) ORG NNNN Establishes Origin of next set of code. 
Either NNNN (decimal) or NNNNH 
(hex) may be used. 

(LABEL)=optional label 
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Appendix III. Binary /Decimal/Hexadecimal Conversions 
HEX BINARY DECIMAL 

00 00000000 0 
01 00000001 I 
02 00000010 2 
03 0000001 I 3 
04 00000100 4 
05 00000101 5 
06 00000110 6 
07 0000011 I 7 
08 00001000 8 
09 00001001 9 
OA 000010!0 IO 
OB 0000101 l l l 
oc 00001100 12 
OD 00001101 13 
OE 00001 l lO 14 
OF OOOOl ll l 15 
JO 00010000 16 
l 1 00010001 17 
12 00010010 18 
13 OOOIOOl l 19 
14 00010100 20 
15 OOO!OlOI 21 
16 OOOIOI JO 22 
17 0001011 l 23 
18 00011000 24 
19 00011001 25 
IA 00011010 26 
18 00011011 27 
IC 0001 l 100 28 
ID 00011101 29 
IE 000ll l lO 30 
1F 00011111 31 
20 00100000 32 
21 00100001 33 
22 001000!0 34 
23 00100011 35 
24 00100100 36 
25 00100!0! 37 
26 00 l001 IO 38 
27 00100111 39 
28 00101000 40 
29 0010!00] 41 
2A 00101010 42 
28 0010101 I 43 
2C 00101100 44 
20 00101101 45 
2E 00!01110 46 
2F 001()1111 47 
30 00110000 48 
31 001 IOOOl 49 
32 ()()llOOlO 50 
33 00110011 51 
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34 00110100 52 
35 00110101 53 
36 00110110 54 
37 001101 I I 55 
38 00111000 56 
39 00111001 57 
3A 00111010 58 
3B 00111011 59 
3C 00111100 60 
3D 00111101 61 
3E 00111110 62 
3F 00111111 63 
40 01000000 64 
41 01000001 65 
42 01000010 66 
43 0100001 l 67 
44 01000100 68 
45 01000101 69 
46 01000110 70 
47 01000111 71 
48 01001000 72 
49 01001001 73 
4A 01001010 74 
4B 0100101 l 75 
4C 01001100 76 
4D 01001101 77 
4E 01001 I 10 78 
4F 01001111 79 
50 01010000 80 
51 01010001 81 
52 01010010 82 
53 01010011 83 
54 01010100 84 
55 01010101 85 
56 01010110 86 
57 01010111 87 
58 01011000 88 
59 01011001 89 
5A 01011010 90 
5B 01011011 91 
SC 01011100 92 
5D 01011101 93 
5E 01011110 94 
5F 01011111 95 
60 01100000 96 
61 01100001 97 
62 01100010 98 
63 01100011 99 
64 01100100 100 
65 01100101 IOI 
66 01100110 102 
67 011001 ll 103 
68 01101000 104 
69 01101001 105 

184 



Binary/ Decimal/ Hexadecimal Conversions APPENDIX III 

6A 
6B 
6C 
6D 
6E 
6F 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
7B 
7C 
7D 
7E 
7F 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
BA 
8B 
BC 
8D 
BE 
BF 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
9A 
9B 
9C 
9D 
9E 
9F 

01101010 
01101011 
01101100 
01101101 
01101110 
01101111 
01110000 
01110001 
01110010 
01110011 
01110100 
Oil 10101 
01110110 
01110111 
01111000 
01111001 
01111010 
01111011 
01111100 
01111101 
01111110 
01111111 
10000000 
10000001 
10000010 
10000011 
10000100 
10000101 
10000110 
10000111 
10001000 
10001001 
10001010 
10001011 
10001100 
10001101 
10001110 
10001111 
10010000 
10010001 
10010010 
10010011 
10010100 
10010101 
10010110 
10010111 
10011000 
10011001 
10011010 
10011011 
10011100 
10011101 
1001 ll 10 
10011111 

106 
107 
108 
109 
110 
11 l 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 

185 



APPENDIX III Binary/ Decimal/ Hexadecimal Conversions 

HEX BINARY DECIMAL 

AO 10100000 160 
Al 10100001 161 
A2 10100010 162 
A3 10100011 163 
A4 10100100 164 
AS 10100101 165 
A6 10100110 166 
A7 10100111 167 
A8 10101000 168 
A9 10101001 169 
AA 10101010 170 
AB 1010101 l 171 
AC 10101100 172 
AD 10101101 173 
AE 10101110 174 
AF 10101111 175 
BO 10110000 176 
Bl 10110001 177 
82 10110010 178 
83 1011001 l 179 
84 10110100 180 
85 10110101 181 
86 10110110 182 
87 lOllOll I 183 
88 lOll 1000 184 
89 lOll 1001 185 
BA 10111010 186 
BB 1011 lOll 187 
BC lOll llOO 188 
BD 10111101 189 
BE 10111110 190 
BF 10111111 191 
co 11000000 192 
Cl 11000001 193 
C2 11000010 194 
C3 11000011 195 
C4 11000100 196 
cs 11000101 197 
C6 11000110 198 
C7 1100011 l 199 
cs 11001000 200 
C9 11001001 201 
CA 11001010 202 
CB 11001011 203 
cc 11001100 204 
CD 11001101 205 
CE 11001110 206 
CF 11001111 207 
DO 11010000 208 
DI 11010001 209 
D2 11010010 210 
D3 llOlOOII 211 
D4 11010100 212 

186 



Binary/ Decimal/ Hexadecimal Conversions APPENDIX III 

D5 I IO IO IOI 213 
D6 11010110 214 
D7 llOI0lll 215 
D8 l IOI 1000 216 
D9 11011001 217 
DA 11011010 218 
DB 11011011 219 
DC 11011100 220 
OD rI0illOI 221 
DE 11011110 222 
DF l!Olllll 223 
E0 l 1100000 224 
El 11100001 225 
E2 11100010 226 
E3 11100011 227 
E4 11100100 228 
E5 11100101 229 
E6 11100110 230 
E7 lll00lll 231 
E8 11101000 232 
E9 11101001 233 
EA 11101010 234 
EB 1 l 101011 235 
EC 11101100 236 
ED 11101101 237 
EE lll0lllO 238 
EF 11101111 239 
F0 11110000 240 
FI 11110001 241 
F2 I II 10010 242 
F3 11110011 243 
F4 11110100 244 
F5 11110101 245 
F6 11110110 246 
F7 11110111 247 
F8 11111000 248 
F9 11111001 249 
FA 11111010 250 
FB 11111011 251 
FC 11111100 252 
FD 11111101 253 
FE lllllllO 254 
FF llllllll 255 
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Appendix IV. Conversion Techniques 
To Convert From Binary or Hexadecimal to Decimal: 

I. If number is 8 bits or less, use Appendix HI. 

2. If number is greater than 8 bits, use this method: 
A. Divide into two bytes (add zeroes to left if necessary) 
B. Convert first (most significant) by Appendix III. 
C. Multiply decimal equivalent of first by 256. 
D. Convert second (least significant) by Appendix III. 
E. Add the result of C and D together to find the decimal number. 
F. Example: Convert 0AA88H to decimal. 

a. First byte is AA, second is 88. 
b. From Appendix III, first is 170 in decimal. 
c. The value 170 multiplied by 256 is 43,520. 
d. Second byte of 88H is 136 decimal from Appendix Ill. 
e. 43,520+136 is 43,656 decimal= 0AA88H. 

To Convert From Decimal to Binary or Hexadecimal: 

l. If number is 255 or less, use Appendix III. 

2. lf number is greater than 255, use this method: 
A Divide by 256 to get an integer result and a remainder. 
B. Convert integer result to a hexadecimal or binary number by Appendix III. 
C. Convert remainder to a hexadecimal or binary number by Appendix III. 
D. Write down the hex number from B followed by hex number from C; you should have four hex 

digits or 16 binary digits. The result is the number in hex or binary. 
E. Example: Convert 60000 to hexadecimal. 

a. 60000/256=234, remainder of 96. 
b. From Appendix III, integer 234 is EA in hexadecimal. 
c. From Appendix Ill, remainder 96 is 60 in hexadecimal. 
d. EA followed by 60 is 0EA60H = 60000 decimal. 
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APPENDIX V 
Z-80 Instruction Set 

A Register Operations 
Complement PL 
Decimal DAA 
Negate NEG 

Adding/Subtracting Two 8-Bit Numbers 
A and Another Register 

ADC A,r SBC A,r 
ADD A,r SUB A,r 

A and Immediate Operand 
ADC A,n SBC A,n 
ADD A,n SUB A,n 

A and Memory Operand 
ADC A,(HL) ADD A,(HL) SBC (HL) SUB (HL) 
ADC A,(IX+d) ADD A,(IX+d) 
ADC A,(IY+d) ADD A,(IY+d) 

SBC (IX+d) SUB (IX+d) 
SBC (IY+d) SUB (IY+d) 

Adding/Subtracting Two 16-Bit Numbers 
HL and Another Register Pair 

ADC Hl,ss ADD HL,ss SBC HL,ss 
IX and Another Register Pair 

ADD IX,pp ADD IY,rr 

Bit Instructions 
Test Bit 

Register BIT b,r 
Memory BIT b,(HL) 

Reset Bit 
Register RES b,r 
Memory RES b,(HL) 

Set Bit 
Register SET b,r 
Memory SET b,(HL) 

Carry Flag 
Complement CCF 
Set SCF 

Compare Two 8-Bit Operands 

BIT b,(IX+d) 

RES b,(IX +d) 

SET b,(IX+d) 

A and Another Register CP r 
A and Immediate Operand CP n 
A and Memory Operand 

CP (HL) CP (IX+d) CP (Y+d) 
Block Compare 

CPD,CPDR,CPI,CPIR 

Decrements and Increments 
Single Register 

DEC r INC r DEC IX DEC IY INC 
Register Pair 

BIT b,(IY+d) 

RES b,(IY+d) 

SET b,(IY+d) 

DEC ss INC ss DEC IX DEC IY INC IX DEC IY 
Memory 

DEC HL DEC (IX+d) DEC (IY+d) 
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Exchanges 
DE and HL EX DE,HL 
Top of Stack 

EX (SP),HL EX (SP),IX EX (SP),IY 

Input/ Output 
1/0 To/From A and Port 

IN A,(n) OUT (n),A 
1/0 To/From Register and Port 

IN r,(C) OUT (C),r 
Block 

IND,INDR,INR,INIR,OTDR,OTIR,OUTD,OUTI 

Interrupts 
Disable DI 
Enable EI 
Interrupt Mode 

IMO IM 1 IM 2 
Return From Interrupt 

RETI RETN 

Jumps 
Unconditional 

JP (HL) JP (IX) JP (IY) JP (nn) JR e 
Conditional 

JP cc,nn JR C,e JR NZ,e Z,e 
Special Conditional 

DJNZ e 

Loads 
A Load Memory Operand 

LD A,(BC) LD A,(DE) LD A,(nn) 
A and Other Registers 

LD A,I LD A,R LD l,A LD R,A 
Between Registers, 8-Bit 

LD r,r' 
Immediate 8-Bit 

LD r,n 
Immediate 16-Bit 

LD dd,nn LD IX,nn LD IY,nn 
Register Pairs From Other Register Pairs 

LD SP,HL LD SP.IX LD SP,IY 
From Memory, 8 Bits 

LD r,(HL) LD r,(IX+d) LD r,(IY+d) 
From Memory, 16 Bits 

LD HL,(nn) LD IX,(nn) LD IY,(nn) LD dd,(nn) 
Block 

LDD,LDDR,LDl,LDIR 
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Logical Operations 8 Bits With A 
A and Another Register 

ANDr ORr XORr 
A and Immediate Operand 

AND n OR n XOR n 
A and Memory Operand 

AND (HL) OR (HL) 
AND (IX+d) OR (IX+d) 
AND (IY+d) OR (IY+d) 

Miscellaneous 
Halt HALT 
No Operation NOP 

Prime/Non-Prime 
Switch AF 

EX AF,AF 
Switch Others 

EXX 

Shifts 
Circular (Rotate) 

XOR (HL) 
XOR (IX+d) 
XOR (IY+d) 

A Only RLA, RLCA, RRA, RRCA 
All Registers RI r RLC r RR r RRC r 
Memory 

RL (HL) 
RL (IX+d) 
RL (IY+d) 

Logical 

RLC (HL) 
RLC (IX+d) 
RLC (IY+d) 

Registers SRL r 

RR (HL) 
RR (IX+d) 
RR (IY+d) 

RRC (HL) 
RRC (IX+d) 
RRC (IY+d) 

Memory SRL (HL) SRL (IX+d) SRL (IY+d) 
Arithmetic 

Registers SLA r SRA r 
Memory 

SLA (HL) SRA (HL) 
SLA (IX+d) SRA (IX+d) 
SLA (IY+d) SRA (IY+d) 

Binary-Coded-Decimal 
RLD RRD 

Stack Operations 
PUSH IX PUSH IY PUSH qq POP IX POP IY POP qq 

Stores 
Of A Only 

LD (BC),A LD (DE),A LD (nn),A 
All ,Registers 

LD (HL),r LD (IX+d),r LD (IY+d),r 
Immediate Data 

LD (HL),n LD (IX+d),n LD (IY+d),n 
16-Bit Registers 

LD (nn),dd LD (nn),IX LD (nn),IY LD (nn),HL 
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Subroutine Action 
Conditional CALLs CALL cc,nn 
Unconditional CALLs CALL nn 
Conditional Return RET cc 
Unconditional Return RET 
Special CALL RST p 

Mnemonic Format 

ADC HL,ss 11101101101ss1010I 

ADC A,r 10001 r I 
ADC A,n 110011101 n 

ADC A,(HL) =:10=00=1=1=10:::::1!-------­

ADC A,(IX+d) 110111011100011101 

ADC A,(IY+d) 111111011100011101 

ADD A,n 110001101 n ! 
ADD a,r 10000 r I 

d 

d 

ADD A,(HL) 10000110 I =====t------.----, 
ADD A,(IX+d) 110111011100001101 d I 

ADD A,(IY+d) 11111101 100001101 d I 
ADD HL,ss 

ADD IX,pp 

ADD IY,rr 

AND r 

AND n 

AND (HL) 

AND (IX+d) 

AND (IY+d) 

BIT b,r 

BIT b,(HL) 

BIT b,(IX+d) 

BIT b,(IY+d) 

CALL cc,nn 

CALL nn 

CCF 

CP r 

CP n 

CP (HL) 

CP (IX+d) 

CP (IY+d) 

CPD 

CPDR 

CPI 

CPIR 

CPL 

DAA 

DEC r 

194 

00ss1001 

110111011 OOpp1001I 

11111101 I 00rr1001 ! 
10100 r 1 
111001101 n 

10100110 

11011101 101001101 

11111101 101001101 

11001011 01 b r ! 
11001011 01 b 1101 

11011101 11001011 

11111101 11001011 

11 C 100 n 

11001101 n 

00111111 

10111 r 

111111101 n 

10111110 

11011101 101111101 

11111101 101111101 

11101101 101010011 

11101101 101110011 

11101101 10100001 I 

11101101 101100011 

00101111 

I 00100111 I 
1 oo r 101 r 

d 

d 

d 

d 

n 

n 

d 

d 

01 b 110 I 
01 b 1101 

Description s z PN C 

HL+ss+CY to HL • • • • 
A+r+Cy to A • • • • 
A+n+Cy to A • • • • 
A+(HL)+Cy to A • • • • 
A+(IX+d)+CY to A • • • • 
A+(IY+d)+CY to A • • • • 
A+n to A • • • • 
A+r to A • • • • 
A+(HL) to A • • • • 
A+(IX+d) to A • • • • 
A+(IY+d) to A • • • • 
HL+ss to HL • 
IX+pp to IX • 
IY+rr to IV • 
A AND r to A • • • 0 

A AND n to A • • • 0 

A AND (HL) to A • • • 0 

A AND (IX+d) to A • • • 0 

A AND (IY+d) to A • • • 0 

Test bit b of r • • • 
Test bit b of (HL) • • • 
Test bit b of (IX+d) • • • 
Test bit b of (IY+d) • • • 
CALL subroutine at nn if cc 

Unconditionally CALL nn 

Complement carry flag • 
Compare A:r • • • • 
Compare A:n • • • • 
Compare A:(HL) • • • • 
Compare A:(IX+d) • • • • 
Compare A:(IY+d) • • • • 
Block Compare, no repeat • • • 
Block Compare, repeat • • • 
Block Compare, no repeat • • • 
Block Compare, repeat • • • 
Complement A (1's comple) 

Decimal Adjust A • • • 
Decrement r by one • • • 
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Mnemonic Format Description s z PN C 

DEC (HL) 00110101 Decrement (HL) by one • • • 
DEC (IX+d) 11011101 00110101 j d Decrement (IX+d) by one • • • 
DEC (IV+d) 11111101 001101011 d Decrement (IV+d) by one • • • 
DECIX 11011101 001010111 Decrement IX by one 

DECIV 11111101 001010111 Decrement IV by one 

DEC ss 00ss1011 Decrement register pair 

DI 11110011 Disable interrupts 

DJNZ e 00010000 e-2 Decrement B and JR if 8-..,10 

El 11111011 Enable interrupts 

EX (SP),HL 11100011 Exchange (SP) and HL 

EX (SP),IX 11011101 11100011 I Exchange(SP)and IX 

EX (SP),IV 11111101 11100011 I Exchange (SP)and IV 

EX AF.AF' 000010001 Set prime AF active 

EX DE,HL 11101011 I Exchange DE and HL 

EXX 11011001 I Set prime B-L active 

HALT 01110110 Halt 

IMO 11101101 01000110 I Set interrupt mode 0 

IM 1 11101101 010101101 Set interrupt mode 1 

IM 2 11101101 01011110 I Set interrupt mode 2 

IN A,(n) 11011011 n I Load A with input from n 

IN r,(C) 11101101 01 r oool Load r with input from (C) • • • 
INC r 00 r 1001 Increment r by one • • • 
INC (HL) 00110100 Increment (HL) by one • • • 
INC (IX+d) 11011101 001101001 d Increment (IX+d) by one • • • 
INC (IV+d) 11111101 00110100 I d Increment (IV+d) by one • • • 
INC IX 11011101 00100011 I Increment IX by one 

INC IV 11111101 00100011 I Increment IV by one 

INCss ooss0011 Increment register pair 

IND 11101101 10101010 I Block 1/0 input from (C) • • • 
INDR 11101101 10111010 I Block 1/0 input, repeat • • • 
INI 11101101 10100010 I Block 1/0 input from (C) • • • 
INIR 11101101 10110010 I Block 1/0 input, repeat • • • 
JP (HL) 11101001 Unconditional jump to (HL) 

JP (IX) 11011101 11101001 I Unconditional jump to (IX) 

JP (IV) 11111101 11101001) Unconditional jump to (IV) 

JP cc,nn 11 C 0101 n I n Jump to nn if cc 

JP nn 11000011 I n I n Unconditional jump to nn 

JR C,e 001110001 e-2 I Jump relative if carry 

JR e 00011000 e-2 Unconditional jump relative 

JR NC,e 00110000 e-2 Jump relative if no carry 

JR NZ,e I 001000001 e-2 Jump relative if non-zero 

JR Z,e I 001010001 e-2 Jump relative if zero 

LO A,(BC) 1000010101 Load A with (BC) 
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Mnemonic 

LO A,(DE) 

LO A,I 

LD A,(nn) 

LD A,R 

LO (BC),A 

LO (DE).A 

LO (HL),n 

LO dd,nn 

LO dd,{nn) 

LO HL.(nn) 

LO (HL),r 

LO l,A 

LO IX,(nn) 

LD IX,nn 

LO (IX+d),n 

LO (IX+d),r 

LD IY,nn 

LD IY,(nn) 

LO (IY+d),n 

LO (IY+d),r 

LO (nn),A 

LO (nn},dd 

LO (nn),HL 

LO (nn),IX 

LO (nn),IY 

LO A.A 

LO r,r' 

LO r,n 

LO r,(HL) 

LO r,(IX+d) 

LO r,(IY+d} 

LO SP,HL 

LO SP.IX 

LO SP,IY 

LOO 

LODA 

LOI 

LOIA 

NEG 

NOP 

OR r 

OR n 

OR (Hl) 
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Format 

I 000110101 

j 1, 101101 j 01010111 I 
1 001110101 n I 
1,1,01101 I 01011111 I 
I 000000101 

I 000100101 

I 00110110( n 

j 00dd0001 ! n I 
j 11101101 j 01dd1011 I 
I 00101010 I n I 
I 01110 , I 
j 1110,011 I 0100011, 1 
j 1101110, 10010,010 1 
1 , 1011101 I 00100001 1 
111011101100110110 I 
j 110,110, 101,10 , 1 
j 11111101 ( 00100001 I 
j 11111101 j 00101010 

j 11111101 j 00110110 

j 11111101 j 01110 r 

100,100101 n 

j 11101101 j 01dd0011 

1001000101 n 

j 11011101 j 00100010 

j 11111101 j 00100010 

j 11101101 j 01001111 

! 01 r r' ! 
joo r 11oj n 

I 01 r 110 I 
j 1101110, 101 r 110 I 
111,11101 Io, r ,10 I 
j 11111001 I 

11011101 11111001 

11111101 11111001 

11101101 10101000 

11101101 10111000 

11101101 1010000 

11101101 10110000 

11101101 01000100 

I 000000001 

j 10, 1 o r I 
j 11110110 I 
j 10110110! 

n 

n 

n 

n n 

n 

n n 

n n 

d n 

d 

n n 

n n 

d n 

d 

n 

n n 

n 

n n 

n n 

d 

d 

Description S Z P/V C 

Load A with (DE) 

Load A with I • • • 
Load A with location nn 

Load A with R • • • 
Store A to (BC) 

Store A to (DE) 

Store n to (HL) 

Load register pair with nn 

Load register pair with location nn 

Load HL with location nn 

Store r to (HL) 

Load I with A 

Load IX with nn 

Load IX with location nn 

Store n to (IX+d) 

Store r to (IX+d) 

Load IY with nn 

Load lY with location nn 

Store n to (IY+d) 

Store r to (IY+d) 

Store A to location nn 

Store register pair to loc'n nn 

Store HL to location nn 

Store IX to location nn 

Store IV to location nn 

Load A with A 

Load r with r' 

Load r with n 

Load r with (HL) 

Load r with (IX+d) 

Load r with (IY+d) 

load SP with Hl 

Load SP with IX 

Load SP with IY 

Block load, f'ward, no repeat 

Block load, f'ward, repeat 

Block load, b'ward, no repeat 

Block load b'ward, repeat 

Negate A (two's complement) 

No Operation 

A OR r to A 

A OR n to A 

A OR (HL) to A 

• 
0 

• 
0 

• • • • 

• • • 0 

• • • 0 

• • • 0 



Mnemonic 

OR (IX+d) 

OR (IY+d) 

OTDR 

OTIR 

OUT (C),r 

OUT (n),A 

OUTD 

OUTI 

POPIX 

POPIY 

POPqq 

PUSH IX 

PUSHIY 

PUSH qq 

RES b,r 

RES b,(HL) 

RES b,(IX+d) 

RES b,(IY+d) 

RET 

RETcc 

RETI 

RETN 

RL r 

RL (HL) 

RL (IX+d) 

RL (IY+d) 

ALA 

Format 

11011101 10110110 

11111101 10110110 

11101101 10111011 

11101101 10110011 

11101101 01 r 001 

110100111 A 

11101101 10101011 

11101101 10100011 

11011101 11100001 

11111101 11100001 

I 11qqooo1 

I 11011101 11100101 I 
I 11111101 11100101 I 
I 11qqo101 

11001011 10 b r 

11001011 10 b 110 

11011101111001011 I 
11111101 I 11001011 I 
110010011 

11 C 000 

11101101 01001101 

11101101 01000101 

11001011 00010 r 

11001011 00010110 

11011101 11001011 

11010101 11001011 

00010111 

RLC r 11001011 00000 r I 
RLC (HL) 11001011 00000110 I 
RLC (IX+d) 11011101 11001011 I 
RLC (IY+d) 11111101 11001011 I 
RLCA 000001111 

RLD 111011011 01101111 

RR r 11001011! 00011 r 

RR (HL) l 110010111 00011110 

RR (IX+d) 110111011 11001011 

RR (IY+d) 0001111~ 11001011 

ARA 000111111 
::::.;:;;-=::.---.... 

ARC r 110010111 00001 r 

ARC (HL) 11001011j 00001110j 

ARC (IX+d) 

ARC (IY+d) 

ARCA 

11011101 

11111101 

I 000011111 

11001011 

11001011 

Z-80 Instruction Set APPENDIX V 

d 

d 

d ~Ob 1101 

d Eo b 1101 

d jooo10110 I 
d 100000110 I 

d 100000110 I 
d 100000110 I 

d I 000111 10 I 
d I 00011110 I 

d 00001110 I 
d 00001110 I 

Description 

A OR (IX+d) to A 

A OR (IY+d) to A 

Block output, b'ward, repeat 

Block output, f'ward, repeat 

Output r to (C) 

Output A to port n 

Block output, b'ward, no repeat 

Block output, f'ward, no repeat 

Pop IX from stack 

Pop IY from stack 

Pop qq from stack 

Push IX onto stack 

Push IY onto stack 

Push qq onto stack 

Reset bit b or r 

Reset bit b of (HL) 

Reset bit b of (IX+d) 

Reset bit b of (IY+d) 

Return from subroutine 

Return from subroutine if cc 

Return from interrupt 

Return from non-maskable int 

Rotate left thru carry r 

Rotate left thru carry (HL) 

Rotate left thru carry (IY+d) 

Rotate left thru carry (IY+d) 

Rotate A left thru carry 

Rotate left circular r 

Rotate left circular (HL) 

Rotate left circular (IX+d) 

Rotate left circular (IY+d) 

Rotate left circular A 

Rotate bed digit left (HL) 

Rotate right thru carry r 

Rotate right thru carry (HL) 

Rotate right thru cy (IX+d) 

Rotate left thru cy (IY+d) 

Rotate A right thru carry 

Rotate r right circular 

Rotate (HL) right circular 

Rotate (IX+d) right circular 

Rotate (IY+d) right circular 

Rotate A right circular 

s z PN C 

• • • 0 

• • • 0 

• • • 
• • • 

• • • 
• • • 

• • • • 
• • • • 
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APPEND IX V Z-80 Instruction Set 

Mnemonic Format 

ARD 111011011 01100111 I 
AST p 11 t 11oj 

SBC A,r 10011 r I 
SBC A,n 1101111o! n 

SBC A,(HL) 1001111oj 
?===4---..... --... 

SBC A,(IX+d) 110111011 10011110 I 
SBC A,(IY+d) 111111011 100111101 

SBC HL,ss 111011011 01ss0010 I 
SCF 001101111 =====t-----, 
SET b,(HL) 110010111 11 b 110 

SET b,(IX+d) 110111011 11001011 

SET b,(IY+d) 111111011 11001011 

SET b,r 110010111 11 b r 

SLA r 110010111 00100 r 

SLA (HL) 110010111 001001101 

SLA (IX+d) 110111011 11001011) 

SLA (IY+d) 111111011 11001011 I 
SRAr I 11001011100101 r I 
SRA (HL) ! 110010111 00101110( 

SRA (IX+d) I 110111011 11001011 I 
SRA (IY+d) I 111111011 110010111 

SAL r 11001011J 00111 r l 
SAL (HL) 110010111 00111110 I 
SAL (IX+d) 110111011 11001011 I 
SRL (IY+d) 111111011 11001011 I 
SUB r 10010 r ! 

=====t------.... 
SUB n j 1101011oj n 

SUB (HL) I 1001011~ 

SUB (IX+d) 

SUB (IY+d) 

XOR r 

XOR n 

XOR (HL) 

XOR (IX+d) 

XOR (IY+d) 

11011101 

11111101 

1 10101 r I 
1110111( 

1010111( 

11011101 

11111101 

10010110 

10010110 

n 

10101110 

10101110 

d 

d 

d 111b1101 

d l11b11ol 

d I 001001101 

d 1 001001101 

d I 001011101 

d 1 001011101 

d I 001111101 

d 1001111101 

d I 
d I 

d 

d 

Key: Instruction Fields: b bit field 0-7 

Description 

Rotate bed digit right (HL) 

Restart to location p 

A-r-CY to A 

A-n-CY to A 

A-(HL)-CY to A 

A-(IX+d)-CY to A 

A-(IY+d)-CY to A 

HL-ss-CY to HL 

Set carry flag 

Set bit b of (HL) 

Set bit b of (IX+d) 

SEt bit b of (IY+d) 

Set bit b of r 

Shift r left arithmetic 

Shift (HL) left arithmetic 

Shift (IX+d) left arithmetic 

Shift (IY+d) left arithmetic 

Shift r right arithmetic 

Shift (HL) right arithmetic 

Shift (IX+d) right arithmetic 

Shift (IY+d) right arithmetic 

Shift r right logical 

Shift (HL) right arithmetic 

Shift (IX+d) right arithmetic 

Shift (IY+d) right arithmetic 

A-r to A 

A-n to A 

A-(HL) to A 

A-(IX+d) to A 

A-(IY+d) to A, 

A EXCLUSIVE OR r to A 

A EXCLUSIVE OR n to A 

A EXCLUSIVE OR (HL) to A 

A'EXCLUSIVE OR (IX+d) to A 

A EXCLUSIVE OR (IY+d) to A 

c condition field O=NZ,1=2, 2=NC, 3=C 

Condition Codes: 
• affected 
0 = reset 
1 = set 

= unaffected 
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4=PO, S=PE, 6=P, 7=M 
d Indexing displacement +127 to -128 
dd register pair: O=BC, 1=DE, 2=HL, 3=SP 
• relative jump displacement +127 to -128 
n Immediate or address value 
pp register pair: O=BC, 1=DE, 2=1X, 3=SP 
qq register pair: O=BC, 1=DE, 2=1Y, 3=SP 
r register: O=B, 1=C, 2=D, 3=E, 4=H, S=L, 7=A 
r' register: same as r 
ss register pair: O=BC, 1=DE, 2=HL, 3=SP 
t AST field: Location=t•8 

s z PN C 

• • • 

• • • • 
• • • • 
• • • • 
• • • • 
• • • • 
• • • • 

1 
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• • • • 
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• • • • 
• • • • 
• • • • 
• • • 0 

• • • 0 

• • • 0 

• • • 0 

• • • 0 



Appendix VI. Two's Complement Numbers 
HEX BINARY DECIMAL 

7F 01111111 + 127 
7E 01111110 + 126 
7D 01111101 + 125 
7C 01111100 + 124 
7B 01111011 + 123 
7A 01111010 + 122 
79 01111001 + 121 
78 01111000 + 120 
77 01110111 + 119 
76 01110110 + 118 
75 01110101 + 117 
74 01110100 + I 16 
73 011l0011 + 115 
72 OIIIOOIO + 114 
71 011 l0001 + 113 
70 01110000 + 112 
6F 01!01111 + 111 
6E OllOIIIO + 110 
6D 01101101 + l09 
6C 01101!00 + 108 
6B 01 IOIOI I + !07 
6A 01 IOIOIO + l06 
69 01101001 + 105 
68 01 IOIOOO + 104 
67 01100111 + l03 
66 011001 IO + 102 
65 01100101 + IOI 
64 01100100 + 100 
63 01 IOOOI I + 99 
62 01 !00010 + 98 
61 01 !00001 + 97 
60 01100000 + 96 
SF OIOlllll + 95 
SE 01011110 + 94 
5D 01011!01 + 93 
SC 0!011100 + 92 
5B 0!011011 + 91 
5A 010110IO + 90 
59 OIOIIOOI + 89 
58 0l01 l000 + 88 
57 OIOIOl 11 + 87 
56 010l0110 + 86 
55 01010101 + 85 
54 0!010100 + 84 
53 01010011 + 83 
52 OIOIOOIO + 82 
51 01010001 + 81 
50 01010000 + 80 
4F OIOOllll + 79 
4E 010011 IO + 78 
4D OIOOl 101 + 77 
4C 01001 IOO + 76 
48 0100!01 I t 75 
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APPENDIX VI Two's Complement Numbers 

4A 0!001010 + 74 
49 01001001 + 73 
48 01001000 + 72 
47 0I00011 l + 71 
46 01000110 + 70 
45 01000101 + 69 
44 01000100 + 68 
43 010000I l + 67 
42 01000010 + 66 
41 01000001 + 65 
40 01000000 + 64 
JF 00! Ii I l I + 63 
3E 00111110 + 62 
3D 00111101 + 61 
3C 00111100 + 60 
3B 0011!011 + 59 
3A 0011I0IO + 58 
39 0011!001 + 57 
38 00I l lO00 + 56 
37 00I1011 l + 55 
36 0OI IOI IO + 54 
35 00110101 + 53 
34 00110100 + 52 
33 00110011 + 51 
32 001 IO0IO + 50 
31 001 !0001 + 49 
30 00110000 + 48 
2F 00101111 + 47 
2E 0OIOI I IO + 46 
2D 00IOl 10I + 45 
2C 00IOI IO0 + 44 
28 00IOIOl l + 43 
2A 00IOl0IO + 42 
29 00l0I00I + 41 
28 00101000 + 40 
27 00100111 + 39 
26 00 I 00 l lO + 38 
25 00100101 + 37 
24 00100100 + 36 
23 00!00011 + 35 
22 00I000IO + 34 
21 00100001 + 33 
20 00100000 + 32 
IF 00011111 + 31 
IE 00011110 + 30 
lD 00011101 + 29 
IC 0001 ! !00 + 28 
!B 000II0I l + 27 
IA 00011010 + 26 
19 000I IO0I + 25 
18 0001 l000 + 24 
17 000!0111 + 23 
16 000I0I lO + 22 
15 00010101 + 21 
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14 00010100 + 20 
13 00010011 + 19 
12 00010010 + 18 
11 00010001 + 17 
IO 00010000 + 16 
OF 00001111 + 15 
OE 00001110 + 14 
OD 00001 IOI + 13 
oc 00001100 + 12 
OB 0000I01 I +II 
0A 00001010 + IO 
09 00001001 + 9 
08 00001000 + 8 
07 000001 l I + 7 
06 00000110 +6 
05 00000101 + 5 
04 00000100 +4 
03 0000001 l + 3 
02 00000010 + 2 
01 00000001 + I 
00 00000000 + 0 
FF 11111111 - I 
FE I l l l l 110 - 2 
FD 11111101 - 3 
FC 11111100 -4 
FB I I I I IOI I - 5 
FA lll!IOIO -6 
F9 1111 !001 .. 7 
F8 11111000 - 8 
F7 11110111 -9 
F6 11110110 - IO 
F5 IIIIOIOI - 11 
F4 11110100 - I 2 
F3 111!0011 - 13 
F2 111100!0 - 14 
Fl I1 l !0001 - 15 
FO 11110000 - 16 
EF I I IOI I I I - 17 
EE I I IOI I IO - 18 
ED 11101101 - 19 
EC ll!OIIOO - 20 
EB 1110!011 - 21 
EA 11101010 - 22 
E9 111()1001 - 23 
E8 11101000 - 24 
E7 l l I00111 - 25 
E6 11!00110 - 26 
E5 11100I01 - 27 
E4 11 IOOIOO - 28 
E3 IIIOOOII - 29 
E2 l l lOOOIO - 30 
El 11100001 - 31 
EO 11100000 - 32 
DF 11011111 - 33 
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APPENDIX VI Two's Complement Numbers 

DE 110111 IO - 34 
DD l IOI 1101 - 35 
DC 11011100 - 36 
DB IIOIIO!l - 37 
DA IIOIIOIO - 38 
D9 1101!001 - 39 
D8 I IOI l000 - 40 
D7 1!010111 - 41 
D6 1 !010110 - 42 
D5 I 1010101 - 43 
D4 11010I00 - 44 
D3 110!0011 - 45 
D2 110100IO - 46 
Dl I IO I ()()0 I - 47 
DO 11010000 - 48 
CF 11001111 - 49 
CE IIOOIIIO - 50 
CD 11001 IOI - 51 
cc 11001100 - 52 
CB I 100101 l - 53 
CA 1100!010 - 54 
C9 1 !001001 - 55 
C8 I 1001000 - 56 
C7 110001!1 - 57 
C6 110001 IO - 58 
C5 I IOOO!Ol - 59 
C4 I IOOOIOO - 60 
CJ 11000011 - 61 
C2 1 !000010 - 62 
Cl 11000001 - 63 
co 11000000 - 64 
BF IOIIIIII - 65 
BE IOIIIIIO - 66 
BD IOIIIIOI - 67 
BC IOIJIIOO - 68 
BB !0111011 - 69 
BA !011!010 - 70 
B9 IOI I 1001 - 71 
B8 1011 IOOO - 72 
B7 l0110111 - 73 
B6 10110110 - 74 
85 1011010! - 75 
B4 10110100 - 76 
83 10110011 - 77 
82 IOI 10010 - 78 
Bl 10110001 - 79 
BO 10110000 - 80 
AF 10101111 - 81 
AE 10I01110 - 82 
AD 10101101 - 83 
AC l0101100 - 84 
AB 10l01011 - 85 
AA 10!01010 - 86 
A9 10101001 - 87 

202 



Two's Complement Numbers APPENDIX VI 

A8 10101000 - 88 
A7 10100111 - 89 
A6 10100110 - 90 
A5 10100!01 - 91 
A4 10100100 - 92 
A3 10!00011 - 93 
A2 IOIOOOIO - 94 
Al 10!00001 - 95 
AO 10100000 - 96 
9F 10011111 - 97 
9E lO0llllO - 98 
9D 10011101 - 99 
9C 10011 IOO - l00 
9B l001 IOI I - IOI 
9A l0011010 - 102 
99 10011001 - l03 
98 1001 l000 - l04 
97 l0010111 - 105 
96 100101!0 - l06 
95 l0010!01 - 107 
94 l0010!00 - l08 
93 !0010011 - 109 
92 !00100!0 - 110 
91 10010001 - 111 
90 10010000 - 112 
8F 10001111 - 113 
8E !0001 I IO - 114 
8D l0001101 - 115 
8C 10001100 - l 16 
8B 1000!011 - 117 
8A 1000!0!0 - 118 
89 !0001001 - 119 
88 10001000 - 120 
87 10000111 - 121 
86 10000110 - 122 
85 l0000101 - 123 
84 10000100 - 124 
83 l ()()00011 - 125 
82 I {){)000 I 0 - 126 
81 10000001 - 127 
80 10000000 - 128 
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Appendix VII. Printable ASCII Codes 
HEX DECIMAL ASCII 

20 32 (space) 
21 33 ! 
22 34 
23 35 # 
24 36 $ 
25 37 % 
26 38 & 
27 39 
28 40 ( 
29 41 ) 
2A 42 * 
2B 43 + 
2C 44 
20 45 
2E 46 
2F 47 
30 48 0 
31 49 l 
32 50 2 
33 51 3 
34 52 4 
35 53 5 
36 54 6 
37 55 7 
38 56 8 
39 57 9 
3A 58 
38 59 
3C 60 < 
30 61 :: 

3E 62 > 
3F 63 ? 
40 64 @ 
41 65 A 
42 66 B 
43 67 C 
44 68 0 
45 69 E 
46 70 F 
47 71 G 
48 72 H 
49 73 I 
4A 74 J 
4B 75 K 
4C 76 L 
40 77 M 
4E 78 N 
4F 79 0 
50 80 p 
51 81 Q 
52 82 R 
53 83 s 
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APPENDIX VII Printable ASCII Codes 

54 84 T 
55 85 u 
56 86 V 
57 87 w 
58 88 X 
59 89 y 

5A 90 z 
5B 91 [ 
SC 92 \ 
5D 93 ] 
SE 94 
SF 95 
60 96 @ 
61 97 a 
62 98 b 
63 99 C 

64 100 d 
65 IOI e 
66 102 f 
67 103 g 
68 104 h 
69 105 
6A 106 J 
6B 107 k 
6C 108 I 
6D 109 m 
6E 110 n 
6F 111 0 

70 112 p 
71 113 q 
72 114 r 
73 115 s 
74 116 t 
75 117 u 
76 118 V 

77 119 w 
78 120 X 

79 121 y 
7A 122 z 
7B 123 { 

7C 124 
7D 125 } 

7E 126 
7F 127 
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